爱吧机器人网 » 技术 > 机器学习 > 正文

智能机器人困惑的时候知道该问什么问题

核心提示: 照片:Nick Dentamaro 布朗大学 上周,我们提到了麻省理工学院的一些研究,即通过链接人的大脑来帮助机器人在他们将要犯错误的时

布朗大学研究员与Baxter机器人
    照片:Nick Dentamaro /布朗大学
 
    上周,我们提到了麻省理工学院的一些研究,即通过链接人的大脑来帮助智能机器人在他们将要犯错误的时候纠正自己。这是非常酷、非常未来主义的东西,但你必须戴上一个非常非常愚蠢的、能够分辨出精确到10毫秒单位的脑电波的帽子,这样它才能有效。
 
    在布朗大学,Stefanie Tellex实验室的研究人员们正在尝试用一个更加社会化的方法让机器人更准确地与人类连接交互。通过使机器人在交互式任务中对其自我困惑进行建模,机器人可以在必要时询问一些相关澄清类的问题以帮助自己准确理解人类具体想要什么,这不需要帽子。
 
    无论对人还是对机器人,你让其帮你去取一件物体,如果这个物体在某种程度上是独特的,那么这将是一个简单的任务;而如果这个任务涉及到一些与目标物体类似的其他物体,那么这就变得复杂了。比方说你是技工,你想找个助手帮你递工具。你可以指着一个架子上的工具,说:“把那个工具给我。”你的助手,如果他们是人,会看你指向哪里,如果货架上只有少数的工具,他们也许能够推断出你要什么工具。但是,如果货架大多是填满的,尤其是如果它充满了相似的工具,你的助手则可能无法确定你到底在要什么工具,所以他们会通过某种方式要求你澄清一下,比如也许指着一个工具,并问,“你要的是这个么?”
 
    要在这种情况下起作用,你的助手会有一个模糊性和不确定性的理解:他们必须要清楚什么时候自己所掌握的信息足以或者不足以完成这个任务,并在必要时采取正确的行动来获取更多的信息,这种不确定性到底是来自助手自己没理解到位,还是你没有表达清楚什么是你具体想要的。对于机器人助手来说,这是一个比人类助手更难的问题,因为涉及到社交化因素。指向、手势、凝视和语言提示都是人类用来交流信息的技巧,而机器人在这方面的表现却通常很糟糕。
 
    布朗大学的研究人员创建了一个名为“FEedback To Collaborative Handoff Partially Observable Markov Decision Process”的决策系统,简称FETCH-POMDP,这种系统能够了解常用手势的含义,这些含义与做手势的人所说的内容相结合来提高机器人对人类想要什么的理解。如果有人正在寻求合作(假设人都是诚实的,不存在欺骗),该系统就能够根据自己困惑来建模,并只在绝对必要的时候提出问题,以免过分烦人。
 
    为了测试fetch-pomdp系统,布朗大学研究人员调查了那些没有明确表达让Baxter机器人为他们取什么东西的人。结果是:三分之一的时候,机器人没有问问题;三分之一的时候,机器人总是问问题;最后的第三分之一时间,机器人只在它认为某个问题是必要的时候才问。研究人员本来预期的是,机器人在不问任何问题的时候是最快的,在总问问题的时候是最准确的,但事实证明,智能化提问的方式是最快也是最准确的。这是因为人类与机器人的互动是混乱的:人们问问题导致转录错误(例如混淆“yes”与“hand”),所以更多的问题意味着更多的误解。
 
    有趣的是,试验中的参与者也把所有的能力归因于机器人,实际上它并没有这种能力:
 
    在试验过程中,许多用户使用介词短语来描述物品,如“给我在碗的左边的勺子。“虽然语言模型在这项任务中没有解释指称语言,但机器人能够使用智能社交化反馈来找出人的期望。这也许可以解释为什么许多用户报告说,他们认为机器人理解介词短语。存在解释指称语言的方法,但仍会出现理解问题。我们的模型将有助于纠正这些错误,而不管具体状态判断和语言理解的方法。
 
    研究人员计划升级更新他们的模型,包括类似的参考措辞,他们还想增加眼睛跟踪这样的东西,以提高精度,甚至更多。添加能力的地方(随着挑选)有可能使这个系统应用在更多的工作场所,尤其是当你有一个宇宙飞船需要修理的时候。
 
    “通过社交化反馈的相互作用减少取物的错误,”内容出自布朗大学的David Whitney,Eric Rosen,James MacGlashan,Lawson L.S. Wong,和Stefanie Tellex,他们将出席在ICRA 2017新加坡。

(本文由爱吧机器人网原创编译  转载请注明原文链接  违者必究)

上一篇:深入浅出Tensorflow(一):深度学习及TensorFlow简介
下一篇:吴恩达:如果高管懂机器学习 数百万人将会失业

本周栏目热点

浅析数据标准化和归一化 优化机器学习算法输出结果

[2018-03-08]  关于标准化(standardization)数据标准化能将原来的数据进行重新调整(一般也称为 z-score 规范化方法),以便他们具有标准正态分布的属 ...

到2025年,自然语言处理市场将突破220亿美元

[2017-08-23]  根据行业分析公司Tractica的报告,到2025年,自然语言处理市场(NLP)将达到220亿美元(约合173亿美元)...

[2016-08-19]  在深度学习出现之前,文字所包含的意思是通过人为设计的符号和结构传达给计算机的。本文讨论了深度学习如何用向量来表示语义,如何更灵活地 ...

顶级AI会议NIPS压轴2017(附PPT、视频、代码大汇总)

[2017-12-19]  NIPS,全称神经信息处理系统大会(Conference and Workshop on Neural Information Processing Systems),是一个关于机器学习和计算神经科学的国际会议。该会议固定在每年的12月举行...

机器学习:人工神经网络ANN

[2017-11-20]  神经网络是从生物领域自然的鬼斧神工中学习智慧的一种应用。人工神经网络(ANN)的发展经历的了几次高潮低谷,如今,随着数据爆发、硬件计算能力暴增、深度学习算法的优化,我们......

精选推荐

2018年企业数字化转型的五大趋势
2018年企业数字化转型的五大趋势

[2017-12-16]  据2016年哈佛商学院研究表明,选择进行数字化转型的企业在3年内表现出了55%的平均毛利润提升,相比之下其他企业毛利润同期降低了37%。数字化转型企业的领头羊,也曾是收入处于......

这些人型机器人是如此真实,你的肉眼几乎无法区分
这些人型机器人是如此真实,你的肉眼几乎无法区分

[2017-09-03]   我们生活在一个区分现实与幻想变得越来越困难的世界。由于机器人技术的进步,创造人工的人类正在逐渐接近完美的最终目标。我们现在看到的机器人不再只是一块发光二极管,......

谷歌在中国成立一个新的人工智能(AI)研究中心
谷歌在中国成立一个新的人工智能(AI)研究中心

[2017-12-13]  谷歌正在中国建立一个新的人工智能(AI)研究中心,希望进一步扩展到中国,以充分利用中国高度重视的人工智能技术。人工智能是目前地球上最具竞争力的领域之一,亚马逊,微软......

苹果AI主管透露自动驾驶汽车项目关于机器学习方面的进展
苹果AI主管透露自动驾驶汽车项目关于机器学习方面的进展

[2017-12-11]  苹果隐秘的自动驾驶汽车项目多年来一直在转移焦点,但今年似乎正在加速。 4月份,公司获得了在加利福尼亚州进行自动驾驶汽车测试的许可证,而在6月份,苹果公司首席执行官库......

助力卷积神经网络时空特征学习 史上最大行人重识别视频数据集被提出
助力卷积神经网络时空特征学习 史上最大行人重识别视频数据集被提出

[2017-12-25]  本文提出了一个大型的、长序列的、用于行人重识别的视频数据集,简称LVreID。与现有的同类数据集相比,该数据集具有以下特点:1)长序列:平均每段视频序列长为200帧,包含丰......

Crossbar将电阻式RAM推入嵌入式AI
Crossbar将电阻式RAM推入嵌入式AI

[2018-05-17]  电阻RAM技术开发商Crossbar表示,它已与航空航天芯片制造商Microsemi达成协议,允许后者在未来的芯片中嵌入Crossbar的非易失性存储器。此举是在先进制造业节点的领先代工厂选......

美国Natilus公司试飞水上无人货机 设计简单成本降低
美国Natilus公司试飞水上无人货机 设计简单成本降低

[2017-12-28]  Natilus创业公司成立于2014年,其梦想是建造大型无人机,以半价提供比船舶快得多国际货运。在十二月份,Natilus计划在旧金山湾测试一个9米翼展的小型原型无人机的水上滑行能力......

什么是机器人学?机器人学简介
什么是机器人学?机器人学简介

[2017-12-14]  机器人学是工程学与科学的交叉学科,包括机械工程,电气工程,计算机科学等。机器人技术涉及机器人的设计、制造、操作和应用,以及用于控制、感官反馈和信息处理的计算机系统。...