爱吧机器人网 » 技术 > 机器学习 > 正文

智能机器人困惑的时候知道该问什么问题

核心提示: 照片:Nick Dentamaro 布朗大学 上周,我们提到了麻省理工学院的一些研究,即通过链接人的大脑来帮助机器人在他们将要犯错误的时

布朗大学研究员与Baxter机器人
    照片:Nick Dentamaro /布朗大学
 
    上周,我们提到了麻省理工学院的一些研究,即通过链接人的大脑来帮助智能机器人在他们将要犯错误的时候纠正自己。这是非常酷、非常未来主义的东西,但你必须戴上一个非常非常愚蠢的、能够分辨出精确到10毫秒单位的脑电波的帽子,这样它才能有效。
 
    在布朗大学,Stefanie Tellex实验室的研究人员们正在尝试用一个更加社会化的方法让机器人更准确地与人类连接交互。通过使机器人在交互式任务中对其自我困惑进行建模,机器人可以在必要时询问一些相关澄清类的问题以帮助自己准确理解人类具体想要什么,这不需要帽子。
 
    无论对人还是对机器人,你让其帮你去取一件物体,如果这个物体在某种程度上是独特的,那么这将是一个简单的任务;而如果这个任务涉及到一些与目标物体类似的其他物体,那么这就变得复杂了。比方说你是技工,你想找个助手帮你递工具。你可以指着一个架子上的工具,说:“把那个工具给我。”你的助手,如果他们是人,会看你指向哪里,如果货架上只有少数的工具,他们也许能够推断出你要什么工具。但是,如果货架大多是填满的,尤其是如果它充满了相似的工具,你的助手则可能无法确定你到底在要什么工具,所以他们会通过某种方式要求你澄清一下,比如也许指着一个工具,并问,“你要的是这个么?”
 
    要在这种情况下起作用,你的助手会有一个模糊性和不确定性的理解:他们必须要清楚什么时候自己所掌握的信息足以或者不足以完成这个任务,并在必要时采取正确的行动来获取更多的信息,这种不确定性到底是来自助手自己没理解到位,还是你没有表达清楚什么是你具体想要的。对于机器人助手来说,这是一个比人类助手更难的问题,因为涉及到社交化因素。指向、手势、凝视和语言提示都是人类用来交流信息的技巧,而机器人在这方面的表现却通常很糟糕。
 
    布朗大学的研究人员创建了一个名为“FEedback To Collaborative Handoff Partially Observable Markov Decision Process”的决策系统,简称FETCH-POMDP,这种系统能够了解常用手势的含义,这些含义与做手势的人所说的内容相结合来提高机器人对人类想要什么的理解。如果有人正在寻求合作(假设人都是诚实的,不存在欺骗),该系统就能够根据自己困惑来建模,并只在绝对必要的时候提出问题,以免过分烦人。
 
    为了测试fetch-pomdp系统,布朗大学研究人员调查了那些没有明确表达让Baxter机器人为他们取什么东西的人。结果是:三分之一的时候,机器人没有问问题;三分之一的时候,机器人总是问问题;最后的第三分之一时间,机器人只在它认为某个问题是必要的时候才问。研究人员本来预期的是,机器人在不问任何问题的时候是最快的,在总问问题的时候是最准确的,但事实证明,智能化提问的方式是最快也是最准确的。这是因为人类与机器人的互动是混乱的:人们问问题导致转录错误(例如混淆“yes”与“hand”),所以更多的问题意味着更多的误解。
 
    有趣的是,试验中的参与者也把所有的能力归因于机器人,实际上它并没有这种能力:
 
    在试验过程中,许多用户使用介词短语来描述物品,如“给我在碗的左边的勺子。“虽然语言模型在这项任务中没有解释指称语言,但机器人能够使用智能社交化反馈来找出人的期望。这也许可以解释为什么许多用户报告说,他们认为机器人理解介词短语。存在解释指称语言的方法,但仍会出现理解问题。我们的模型将有助于纠正这些错误,而不管具体状态判断和语言理解的方法。
 
    研究人员计划升级更新他们的模型,包括类似的参考措辞,他们还想增加眼睛跟踪这样的东西,以提高精度,甚至更多。添加能力的地方(随着挑选)有可能使这个系统应用在更多的工作场所,尤其是当你有一个宇宙飞船需要修理的时候。
 
    “通过社交化反馈的相互作用减少取物的错误,”内容出自布朗大学的David Whitney,Eric Rosen,James MacGlashan,Lawson L.S. Wong,和Stefanie Tellex,他们将出席在ICRA 2017新加坡。

(本文由爱吧机器人网原创编译  转载请注明原文链接  违者必究)

上一篇:深入浅出Tensorflow(一):深度学习及TensorFlow简介
下一篇:吴恩达:如果高管懂机器学习 数百万人将会失业

本周栏目热点

入门 | 一文介绍机器学习中基本的数学符号

[2018-04-09]  本文介绍了机器学习中的基本数学符号。具体来说有算数符号,包括各种乘法、指数、平方根以及对数;数列和集合符号,包括索引、累加以及集合关系。此外,本文还给出了 5 个当......

[2016-08-19]  在深度学习出现之前,文字所包含的意思是通过人为设计的符号和结构传达给计算机的。本文讨论了深度学习如何用向量来表示语义,如何更灵活地 ...

美海军研究实验室研发新型数据高效的机器学习算法

[2018-12-12]  NRL机器人专家格伦·亨肖表示,在过去10年里机器人的自主能力已经取得显著进步,但机器人仍难以执行特殊的动作,尤其是使用机械臂进行操纵的动作。N...

Real机智:新一代谷歌机器人ATLAS已逆天

[2016-03-04]     自从被谷歌收购后,波士顿动力公司的 机器人技术 发展的也相当迅猛,除了那款 ...

2018年值得关注的10种机器学习工具

[2018-01-03]  2017年是机器学习大放异彩的一年,这归功于众多公司广泛而深入地研究和开发更新颖、更高效的工具和框架。这里介绍,有望在2018年大行其道的10种机器学习的工具和框架。...

精选推荐

2018年企业数字化转型的五大趋势
2018年企业数字化转型的五大趋势

[2017-12-16]  据2016年哈佛商学院研究表明,选择进行数字化转型的企业在3年内表现出了55%的平均毛利润提升,相比之下其他企业毛利润同期降低了37%。数字化转型企业的领头羊,也曾是收入处于......

机器人工程师具体都做什么?
机器人工程师具体都做什么?

[2017-12-08]  机器人工程师是幕后设计师,负责创建机器人和机器人系统,能够执行人类无法完成或不愿意完成的任务。 通过他们的创造,机器人工程师帮助工作更安全,更轻松,更高效,特别是......

基于生物启发的机器人很容易适应丢失附属器官
基于生物启发的机器人很容易适应丢失附属器官

[2017-12-17]  很多机器人被设计应用在危险环境,如灾难现场。在这些地方,他们的运动系统完全有可能被损坏。那这样会吓跑这些机器人吗?也许不是,如果它们像日本的东北和北海道大学创造的......

亚马逊CEO杰夫·贝佐斯操控巨型有人驾驶机器人(巨型机甲)
亚马逊CEO杰夫·贝佐斯操控巨型有人驾驶机器人(巨型机甲)

[2017-03-21]  近日,亚马逊CEO杰夫·贝佐斯实现了每一个6岁儿童都会有的梦想,他控制了一个巨大的机甲机器人。据国外媒体Verge报道,前天(3月19日),贝 ...

农业将为高科技行业 农业机器人的应用领域
农业将为高科技行业 农业机器人的应用领域

[2017-12-17]  农业正在迅速成为一个令人兴奋的高科技产业,吸引了新专业人士,新公司和新投资者。技术发展迅速,不仅提高了农民的生产能力,而且促进了我们所知道的机器人和自动化技术的发展。...

2022年全球工业机器人市场将达到790亿美元
2022年全球工业机器人市场将达到790亿美元

[2017-09-04]  预计到 2022年, 全球工业机器人市场将达到790亿美元, 并在预测期内登记11 5% 的复合年增长率。随着发展中国家中小型企业需求的不断增长, 采用自动化技术以确保生产质量......

2017年:AI渗入云端
2017年:AI渗入云端

[2017-12-29]  云中的人工智能不仅仅是科技巨头的权力游戏,它也可能是人工智能领域的下一个飞跃。加利福尼亚州的Rigetti Computing公司刚刚使用其原型量子芯片之一在其云平台上运行机器学......

麻省理工正研究植物机器人 让植物自主控制机器人
麻省理工正研究植物机器人 让植物自主控制机器人

[2018-12-08]  控制论通常指人类用机器人部件增强自己。我们听说过动物机器人或昆虫机器人,但我们很少听说植物机器人对吧?一个机器人其实是对植物有很大益处的,因为一般植物根本无法移动......