爱吧机器人网 » 技术 > 机器学习 > 正文

Machine Learning-感知器分类算法详解

核心提示:今天我们来讲解的内容是感知器分类算法,本文的结构如下:什么是感知器分类算法,在Python中实现感知器学习算法,在iris(鸢尾花)数据集上训练一个感知器模型,自适应线性神经元和融合

作者:阿Sam 【翻译整理】
个人公众号:SAMshare
选自 python-machine-learning-book on GitHub
作者:Sebastian Raschka
翻译&整理 by Sam


最近在GitHub上面发现了一个炒鸡赞的项目,果然直接拿过来消化一波,这个项目的内容是关于机器学习的指导,我会挑一些内容来完成下面的一系列文章。


今天我们来讲解的内容是感知器分类算法,本文的结构如下:

什么是感知器分类算法
在Python中实现感知器学习算法
在iris(鸢尾花)数据集上训练一个感知器模型
自适应线性神经元和融合学习
使用梯度下降方法来最小化损失函数
在Python中实现一个自适应的线性神经元


什么是感知器分类算法


设想我们改变逻辑回归算法,“迫使”它只能输出-1或1抑或其他定值。在这种情况下,之前的逻辑函数‍‍g就会变成阈值函数sign:




如果我们令假设为hθ(x)=g(θTx)hθ(x)=g(θTx),将其带入之前的迭代法中:

至此我们就得出了感知器学习算法。简单地来说,感知器学习算法是神经网络中的一个概念,单层感知器是最简单的神经网络,输入层和输出层直接相连。

每一个输入端和其上的权值相乘,然后将这些乘积相加得到乘积和,这个结果与阈值相比较(一般为0),若大于阈值输出端就取1,反之,输出端取-1。

初始权重向量W=[0,0,0],更新公式W(i)=W(i)+ΔW(i);ΔW(i)=η*(y-y’)*X(i); 
η:学习率,介于[0,1]之间 
y:输入样本的正确分类 
y’:感知器计算出来的分类 
通过上面公式不断更新权值,直到达到分类要求。
图:单层感知器模型

初始化权重向量W,与输入向量做点乘,将结果与阈值作比较,得到分类结果1或-1。


在Python中实现感知器学习算法


下面直接贴上实现代码:(也可在公众号后台输入“感知器”进行获取ipynb文件)

 1import numpy as np
 2class  Perceptron(object):
 3"""Perceptron classifier.
 4Parameters
 5------------
 6eta : float
 7  Learning rate (between 0.0 and 1.0)
 8n_iter : int
 9  Passes over the training dataset.
10Attributes
11-----------
12w_ : 1d-array
13  Weights after fitting.
14errors_ : list
15  Number of misclassifications (updates) in each epoch.
16"""
17def __init__(self, eta=0.01, n_iter=10):
18  self.eta = eta
19  self.n_iter = n_iter
20def fit(self, X, y):
21  """Fit training data.
22  Parameters
23  ----------
24  X : {array-like}, shape = [n_samples, n_features]
25  Training vectors, where n_samples is the number of samples and
26  n_features is the number of features.
27  y : array-like, shape = [n_samples]
28  Target values.
29  Returns
30  -------
31  self : object
32  """
33  self.w_ = np.zeros(1 + X.shape[1])
34  self.errors_ = []
35  for _ in range(self.n_iter):
36  errors = 0
37  for xi, target in zip(X, y):
38  update = self.eta * (target - self.predict(xi))
39  self.w_[1:] += update * xi
40  self.w_[0] += update
41  errors += int(update != 0.0)
42  self.errors_.append(errors)
43  return self
44def net_input(self, X):
45  """Calculate net input"""
46  return np.dot(X, self.w_[1:]) + self.w_[0]
47def predict(self, X):
48  """Return class label after unit step"""
49  return np.where(self.net_input(X) >= 0.0, 1, -1)

特别说明:


学习速率η(eta)只有在权重(一般取值0或者很小的数)为非零值的时候,才会对分类结果产生作用。如果所有的权重都初始化为0,学习速率参数eta只影响权重向量的大小,而不影响其方向,为了使学习速率影响分类结果,权重需要初始化为非零值。需要更改的代码中的相应行在下面突出显示:

1def __init__(self, eta=0.01, n_iter=50, random_seed=1): # add random_seed=1
2  ...
3  self.random_seed = random_seed # add this line
4def fit(self, X, y):
5  ...
6  # self.w_ = np.zeros(1 + X.shape[1]) ## remove this line
7  rgen = np.random.RandomState(self.random_seed) # add this line
8  self.w_ = rgen.normal(loc=0.0, scale=0.01, size=1 + X.shape[1]) # add this line

在iris(鸢尾)数据集上训练一个感知器模型

读取iris数据集
1import pandas as pd
2import collections
3df = pd.read_csv('https://archive.ics.uci.edu/ml/'
4  'machine-learning-databases/iris/iris.data', header=None)
5print (df.head())
6print ("\n")
7print (df.describe())
8print ("\n")
9print (collections.Counter(df[4]))

output:



可视化iris数据

 1%matplotlib inline
 2import matplotlib.pyplot as plt
 3import numpy as np
 4# 为了显示中文(这里是Mac的解决方法,其他的大家可以去百度一下)
 5from matplotlib.font_manager import FontProperties
 6font = FontProperties(fname='/System/Library/Fonts/STHeiti Light.ttc')
 7# 选择 setosa and versicolor类型的花
 8y = df.iloc[0:100, 4].values
 9y = np.where(y == 'Iris-setosa', -1, 1)
10# 提取它们的特征 (sepal length and petal length)
11X = df.iloc[0:100, [0, 2]].values
12# 可视化数据,因为数据有经过处理,总共150行数据,1-50行是setosa花,51-100是versicolor花,101-150是virginica花
13plt.scatter(X[:50, 0], X[:50, 1],
14  color='red', marker='o', label='setosa')
15plt.scatter(X[50:100, 0], X[50:100, 1],
16  color='blue', marker='x', label='versicolor')
17plt.xlabel('sepal 长度 [cm]',FontProperties=font,fontsize=14)
18plt.ylabel('petal 长度 [cm]',FontProperties=font,fontsize=14)
19plt.legend(loc='upper left')
20plt.tight_layout()
21plt.show()

output:


训练感知器模型

1# Perceptron是我们前面定义的感知器算法函数,这里就直接调用就好
2ppn = Perceptron(eta=0.1, n_iter=10)
3ppn.fit(X, y)
4plt.plot(range(1, len(ppn.errors_) + 1), ppn.errors_, marker='o')
5plt.xlabel('迭代次数',FontProperties=font,fontsize=14)
6plt.ylabel('权重更新次数(错误次数)',FontProperties=font,fontsize=14)
7plt.tight_layout()
8plt.show()


output:


绘制函数决策区域

 1from matplotlib.colors import ListedColormap
 2def plot_decision_regions(X, y, classifier, resolution=0.02):
 3  # setup marker generator and color map
 4  markers = ('s', 'x', 'o', '^', 'v')
 5  colors = ('red', 'blue', 'lightgreen', 'gray', 'cyan')
 6  cmap = ListedColormap(colors[:len(np.unique(y))])
 7  # plot the decision surface
 8  x1_min, x1_max = X[:, 0].min() - 1, X[:, 0].max() + 1
 9  x2_min, x2_max = X[:, 1].min() - 1, X[:, 1].max() + 1
10  xx1, xx2 = np.meshgrid(np.arange(x1_min, x1_max, resolution),
11 np.arange(x2_min, x2_max, resolution))
12  Z = classifier.predict(np.array([xx1.ravel(), xx2.ravel()]).T)
13  Z = Z.reshape(xx1.shape)
14  plt.contourf(xx1, xx2, Z, alpha=0.4, cmap=cmap)
15  plt.xlim(xx1.min(), xx1.max())
16  plt.ylim(xx2.min(), xx2.max())
17  # plot class samples
18  for idx, cl in enumerate(np.unique(y)):
19  plt.scatter(x=X[y == cl, 0], y=X[y == cl, 1],
20  alpha=0.8, c=cmap(idx),
21  edgecolor='black',
22  marker=markers[idx], 
23  label=cl)


1plot_decision_regions(X, y, classifier=ppn)
2plt.xlabel('sepal 长度 [cm]',FontProperties=font,fontsize=14)
3plt.ylabel('petal 长度 [cm]',FontProperties=font,fontsize=14)
4plt.legend(loc='upper left')
5plt.tight_layout()
6plt.show()


output:



自适应线性神经元和融合学习


使用梯度下降方法来最小化损失函数

梯度下降的方法十分常见,具体的了解可以参考附录的文章[2],如今,梯度下降主要用于在神经网络模型中进行权重更新,即在一个方向上更新和调整模型的参数,来最小化损失函数。

图:梯度下降原理过程演示

在Python中实现一个自适应的线性神经元

先贴上定义的python函数,(也可在公众号后台输入“感知器”进行获取ipynb文件)

 1# 定义神经元函数
 2class AdalineGD(object):
 3  """ADAptive LInear NEuron classifier.
 4  Parameters
 5  ------------
 6  eta : float
 7  Learning rate (between 0.0 and 1.0)
 8  n_iter : int
 9  Passes over the training dataset.
10  Attributes
11  -----------
12  w_ : 1d-array
13  Weights after fitting.
14  cost_ : list
15  Sum-of-squares cost function value in each epoch.
16  """
17  def __init__(self, eta=0.01, n_iter=50):
18  self.eta = eta
19  self.n_iter = n_iter
20  def fit(self, X, y):
21  """ Fit training data.
22  Parameters
23  ----------
24  X : {array-like}, shape = [n_samples, n_features]
25  Training vectors, where n_samples is the number of samples and
26  n_features is the number of features.
27  y : array-like, shape = [n_samples]
28  Target values.
29  Returns
30  -------
31  self : object
32  """
33  self.w_ = np.zeros(1 + X.shape[1])
34  self.cost_ = []
35  for i in range(self.n_iter):
36  net_input = self.net_input(X)
37  # Please note that the "activation" method has no effect
38  # in the code since it is simply an identity function. We
39  # could write `output = self.net_input(X)` directly instead.
40  # The purpose of the activation is more conceptual, i.e.,  
41  # in the case of logistic regression, we could change it to
42  # a sigmoid function to implement a logistic regression classifier.
43  output = self.activation(X)
44  errors = (y - output)
45  self.w_[1:] += self.eta * X.T.dot(errors)
46  self.w_[0] += self.eta * errors.sum()
47  cost = (errors**2).sum() / 2.0
48  self.cost_.append(cost)
49  return self
50  def net_input(self, X):
51  """Calculate net input"""
52  return np.dot(X, self.w_[1:]) + self.w_[0]
53  def activation(self, X):
54  """Compute linear activation"""
55  return self.net_input(X)
56  def predict(self, X):
57  """Return class label after unit step"""
58  return np.where(self.activation(X) >= 0.0, 1, -1)

查看不同学习率下的错误率随迭代次数的变化情况:

\
\
\
\



上一篇:贝叶斯网络之父:如何真正教会机器理解
下一篇:深度学习的可解释性研究(一):让模型「说人话」

本周栏目热点

期待已久的Ubuntu 18.04 LTS正式发布 适用于机器学习

[2018-04-27]  Canonical于伦敦时间26日正式发布了Ubuntu 18 04 LTS版,Canonical的CEO称,Ubuntu 18 04 LTS在云计算领域效率极高,特别适用于机器学习这样的存储密集型和计算密集型任务。...

[2016-08-19]  在深度学习出现之前,文字所包含的意思是通过人为设计的符号和结构传达给计算机的。本文讨论了深度学习如何用向量来表示语义,如何更灵活地 ...

机器人是怎么深度学习的?

[2016-03-29]      一个人独处时,感觉有点孤单,怎么办?微软亚洲研究院推出的微软小冰,或许 ...

Real机智:新一代谷歌机器人ATLAS已逆天

[2016-03-04]     自从被谷歌收购后,波士顿动力公司的 机器人技术 发展的也相当迅猛,除了那款 ...

机器学习算法Python实现--线性回归分析

[2018-03-19]  1、代价函数其中:下面就是要求出theta,使代价最小,即代表我们拟合出来的方程距离真实值最近共有m条数据,其中代表我们要拟合出来的方程 ...

精选推荐

2017年:AI渗入云端
2017年:AI渗入云端

[2017-12-29]  云中的人工智能不仅仅是科技巨头的权力游戏,它也可能是人工智能领域的下一个飞跃。加利福尼亚州的Rigetti Computing公司刚刚使用其原型量子芯片之一在其云平台上运行机器学......

科学家从蟑螂获得启发 教机器人更好地走路
科学家从蟑螂获得启发 教机器人更好地走路

[2017-12-11]  Weihmann指出:“我特别感到惊讶的是,动物运动稳定机制的变化与腿部协调的变化是一致的。昆虫的慢运行非常稳定,因为它的重心很低,三条腿总是以协调的方式运动。...

助力卷积神经网络时空特征学习 史上最大行人重识别视频数据集被提出
助力卷积神经网络时空特征学习 史上最大行人重识别视频数据集被提出

[2017-12-25]  本文提出了一个大型的、长序列的、用于行人重识别的视频数据集,简称LVreID。与现有的同类数据集相比,该数据集具有以下特点:1)长序列:平均每段视频序列长为200帧,包含丰......

亚马逊CEO杰夫·贝佐斯操控巨型有人驾驶机器人(巨型机甲)
亚马逊CEO杰夫·贝佐斯操控巨型有人驾驶机器人(巨型机甲)

[2017-03-21]  近日,亚马逊CEO杰夫·贝佐斯实现了每一个6岁儿童都会有的梦想,他控制了一个巨大的机甲机器人。据国外媒体Verge报道,前天(3月19日),贝 ...

美国喷气推进实验室的AI驱动无人机挑战人类飞行员
美国喷气推进实验室的AI驱动无人机挑战人类飞行员

[2017-12-08]  随着无人机及其组件越来越小,效率越来越高,功能越来越强大,我们已经看到越来越多的研究开始让无人机自主飞行在半结构化的环境中,而不依赖于外部定位。 宾夕法尼亚大学在......

CES 2018:英特尔推出49量子位芯片争夺量子霸权
CES 2018:英特尔推出49量子位芯片争夺量子霸权

[2018-01-10]  在与Google、IBM的一场关于建立量子计算系统的马拉松比赛中,英特尔通过了一个关键的里程碑。近日,这个科技巨头已经推出了一个49个量子位 ...

这些人型机器人是如此真实,你的肉眼几乎无法区分
这些人型机器人是如此真实,你的肉眼几乎无法区分

[2017-09-03]   我们生活在一个区分现实与幻想变得越来越困难的世界。由于机器人技术的进步,创造人工的人类正在逐渐接近完美的最终目标。我们现在看到的机器人不再只是一块发光二极管,......

揭秘达芬奇手术机器人
揭秘达芬奇手术机器人

[2018-04-19]  达芬奇手术系统是由美国Intuitive Surgical公司制造的机器人手术系统。美国食品和药物管理局(FDA)于2000年通过该标准,旨在利用微创手段 ...