爱吧机器人网 » 技术 > 人工智能 > 正文

人工智能又是一次泡沫吗?

核心提示:  人工智能的两次大起大落  1956 年人工智能首次在达特茅斯会议中被提出,John McCarthy、 Marvin Minsky、Allen Newell、 Arthu

  人工智能的两次大起大落

  1956 年“人工智能”首次在达特茅斯会议中被提出,John McCarthy、 Marvin Minsky、Allen Newell、 Arthur Samuel 以及 Herbert Simon 五人顺势成为当时这一领域的领军人物。紧接着人工智能开始酝酿其第一次浪潮,人工智能实验室在全球各地扎根。

  直到 1973 年《莱特希尔报告》宣称“AI 领域的任何一部分都没有能产出人们当初承诺的有主要影响力进步”,象征着人工智能正式进入寒冬。

  而到了20世纪80年代,人工智能的关键 应用 ——专家系统得以发展,人工智能迎来第二春,但是由于数据较少,难以捕捉专家的隐性知识,建造和维护大型系统的复杂性和成本也使得人工智能渐渐不被主流计算机科学所重视。

  Gartner模型

  为了更好地理解人工智能的两次大起大落,我们有必要引入Gartner模型。该模型呈现的是先迅猛爆发而后跌入谷底再慢慢抬升的技术发展趋势。该模型曾因成功预言互联网泡沫而一战成名,20多年来一直是投资人最常引用的模型之一。

人工智能发展走势

  在许多技术发展的历史进程中都会看到Gartner曲线的影子,比如Web技术,Amazon和Yahoo在1998年-2005年间的股价变动就和Gartner曲线的走势非常类似。

gartner曲线图

  要用Gartner曲线去理解人工智能的发展,我们还需要理解Gartner曲线背后的逻辑。Gartner曲线实际上是由两条曲线叠加而成的,第一条是社会舆论对新技术期望值与实际水平的差距(Hype Level),第二条则对应新技术的真实发展水平(Engineering or Business Maturity),二者叠加所对应的正是y轴,代表社会上对新技术的实际期望。Hype Level先升后降的逻辑在于新技术出来之后。由于媒体本身的属性,必然会导致新技术社会期望的过度拔高,而随着技术的落地与试错,社会对新技术的期望会逐渐回归理性。因而Hype Level曲线会呈现先升后降再回归正常水平的线形。而Engineering or Business Maturity曲线的逐步提升与技术随时间逐渐提升的常识也是相吻合的。
人工智能会再一次跌进谷底吗?
 
  如此,我们用Gartner模型来分析,便不难理解人工智能发展历史的两次大起大落。人工智能的第一春,起于人工智能的首次提出为人类社会带来了人工智能时代的美好想象,但在1973年英国发表的《莱特希尔报告》报告指出,在人工智能三大基础研究中,自动机和中央神经系统虽有研究价值,但进展令人失望,而 机器人 领域是没有研究价值,建议取消机器人的研究。《莱特希尔报告》完全打碎了当时社会对人工智能的期望,人工智能随即进入严冬。而在人工智能的第二次大起大落中,人工智能崛起于专家系统技术的发展,但随着日本第五代智能计算机研制的失败,人们开始意识到人工智能并非靠硬件来支撑而要靠知识、软件和创新,进而转向研究知识百科,但收效甚微,研究断断续续。直至90年代后期,由于搜索引擎的强势崛起,互联网显示了强大威力,知识百科开始衰败,人工智能彻底进入寒冬。

人工智能会再一次跌进谷底吗?
  人工智能的第三春

  但是知识百科的尝试并不是徒劳,它让我们意识到知识不能靠已有知识的表达,需要靠自动学习来驱动。九十年代后期,计算机计算能力已经得到大幅提高,以数据挖掘和商业诊断为主要代表的应用成功,使人工智能重回人们的视野。

  在研究领域,虽然神经网络模型在漫长的计算机发展历史中得以长足发展,从理论到应用算法都有了长足进步,但因为计算复杂等原因,逐渐被向量机模型(SVM)学派超越。此后,各种学派的研究成果迅速更新迭代,人工智能逐渐复兴。

  直至2006年训练高层神经网络算法的出现,人工智能迎来了第三春。神经网络算法在图像识别领域的表现一下子推进到了靠近突破人类表现的边缘,引起了整个科研界的狂热。披着深度学习这件华丽新衣的神经网络在计算机视觉,自然语言处理和语音处理等领域同样表现出色,人工智能迎来了前所未有的发展高潮。

  2016年10月,美国白宫连发两份报告《美国国家人工智能研发战略计划》和《为未来人工智能做好准备》,对当前人工智能发展现状进行了调研,并阐述了人工智能带来的若干政策机遇。同年12月,白宫再次发布报告《人工智能、自动化与经济》,提出了应对人工智能驱动自动化经济的三大策略。可见美国政府发展人工智能的决心。

  再看中国,2015年2月工程院就人工智能正式立项,2016年3月正式启动,同年8月在北京研讨会上以史无前例的速度进入了6+9专项和国家十三五、十四五和十五五行动计划,我国也把人工智能的发展提到了战略的高度。

  世界上两大经济强国都如此看好人工智能的未来,我们有信心说在未来两到三年人工智能仍会处于黄金的发展时期。

  那么我们不禁会问,繁荣过后,人工智能的第三春会因为被高估而继续掉进Gartner曲线的循环中还是会像互联网技术发展一样迎来指数式增长呢?

人工智能会再一次跌进谷底吗?
  我们认为目前已经初步具备人工智能发展的信息环境,但AI仍然存在很多问题,人工智能是否会掉进Gartner曲线的循环还很难说。

  回顾人工智能60年来的大起大落,我们可以看到,人工智能的失败往往是因为其与快速变化的信息环境不符,这是因为人工智能进步的动力不仅来自于学术研究的内在动力,更重要的是来自整体信息环境改变与需求的外部驱动力。而当前人工智能恰好面临着剧烈变化的庞大信息环境与信息需求。

  当前的信息环境相较于80年代已经发生了巨大而深刻的变化,计算机已经与人类相伴,各种移动终端、传感器和可穿戴设备等智能硬件构成了一个庞大的网络,个体与个体、个体与群体以及人与物体史无前例地连接在一起,世界已经从二元的PH空间结构(Physics、Human Society)演变成三元的CPH空间结构(Cyber),人以及万事万物都处于回路中。

人工智能会再一次跌进谷底吗?
  在此环境下,人类社会对人工智能的需求开始大爆发,人工智能的研究已经逐渐从学术牵头转变成需求牵头,众多国内外科技巨头开始入场真实地印证了这一趋势。智能城市、智能医疗、智能交通、智能物流、无人驾驶、智能制造等诸多领域都迫切地需要人工智能的发展。在智能制造领域人工智能已经真真切切地提高了社会生产力。

  人工智能的目标与理念也发生了变化,从过去追求“用计算机模拟人的智能”逐渐改变为机器+人的人机融合智能系统、机器+人+网络的智能系统以及人+机+网+物的智能城市系统等等。

  最后,也是最为直接的条件,人工智能所需的数据环境也逐渐形成。人工智能的基本方法是数据驱动的算法,未来将迎来大数据、传感器和网络以及跨媒体驱动的计算,到时大数据智能、感知融合智能和跨媒体智能将不可避免地到来,传统的机器智能测试图灵方法将受到挑战。

  但是我们不得不承认人工智能仍然存在许多问题,目前神经网络算法需要的大量的数据进行训练,难以实现无监督学习,这已经成为制约人工智能发展的关键因素。

  在过去 20 年,无论是深蓝(Deep Blue)在国际象棋中击败了 Garry Kasparov,沃森(Watson)击败了 Jeopardy 的常胜冠军,还是AlphaGo 击败了世界上最好的围棋棋手李世石,这些成功都是有限的,深蓝、沃森和 AlphaGo 都是高度专业化的、目的单一的机器,只能在一件事上做得很好。深蓝和沃森不能下围棋,AlphaGo 不能下国际象棋或参加 Jeopardy,甚至最基本的水平都不行,这些智能范围都非常狭窄,也不能泛化。

  中国科学院院士、清华大学教授张钹就曾说道:当前以大数据与深度学习为基础的人工智能存在的最大问题是不可解释和不可理解,就事论事,缺乏推广能力,遇到新的情况一筹莫展。因此当面对动态变化的环境,信息不完全,存在干扰与虚假信息时,人工智能系统的性能就会显著下降。此外,这样的人工智能系统由于不可理解,无法实现人机交互,无法与人类协同工作与和谐相处。解决这些问题的困难很大,人工智能发展的道路还很长,机器智能达到适应动态变化环境的能力还很遥远。

  因此,我们很难去断定人工智能是否会继续掉进Gartner曲线的循环,目前人工智能技术的发展速度很快,一切都处于快速变化的进程中,有可能在神经网络陷入低谷时,另一新兴技术的迅速崛起会取代神经网络的算法,从而继续撑起人工智能的第三春。

(原标题:人工智能会再一次跌进低谷吗?)

上一篇:人工智能将通过何种方式影响未来教育
下一篇:视频也能提取“指纹” 阿里达摩院人工智能技术解决版权难题

本周栏目热点

人工智能的认知层面大家都在关注什么?

[2018-01-20]  从AI的认知层来看“自然语言处理、语义网与知识图谱”算是关键技术。我们按照这些关键词提取36Kr、品玩与虎嗅的相关新闻共计803篇,构建新闻相似度网络,进行聚类与分析。...

AI到底有多聪明?没我们想象的那么聪明

[2017-12-12]  对于政治学家、经济学家、人工智能研究者,乃至广大的普罗大众来说,“AI(人工智能)到底有多智能?它的发展速度有多快?”这种问题是目前最令人困惑的。而对这些问题的解答......

人工智能、机器学习、机器人之间有什么区别和联系?

[2018-01-23]  人工智能(AI)曾经只是科幻电影,电视节目和书籍中探讨的一个话题,如今已经迅速成为现实世界的一部分。 1969年,管理咨询公司麦肯锡公司(McKinsey&Company)发表了一篇文......

会说谎的人工智能未来或制造更多假视频假美女

[2018-01-19]  人工智能(AI)的发展速度惊人。现在的人工智能具备了伪造视频的能力,可以达到人眼无法识别真假的程度,因此引发担忧。...

[2018-01-18]  人工智能、机器人和自动驾驶已成为流行文化的前沿,甚至是政治表述。而去年人工智能的研究也让我们相信这不是一个失败的开端,而是一个拐点。在这份报告中,高盛从宏观(...

精选推荐

CES 2018:英特尔推出49量子位芯片争夺量子霸权
CES 2018:英特尔推出49量子位芯片争夺量子霸权

[2018-01-10]  在与Google、IBM的一场关于建立量子计算系统的马拉松比赛中,英特尔通过了一个关键的里程碑。近日,这个科技巨头已经推出了一个49个量子位 ...

从AI中窥探人性
从AI中窥探人性

[2018-01-03]  人们对人造智能的恐惧早已成为科幻书籍和电影的极好题材。但现在,一些同样的担忧开始影响关于现实世界AI技术的政策讨论。如果这样的担忧演变成为一种技术恐慌...

2017年:AI渗入云端
2017年:AI渗入云端

[2017-12-29]  云中的人工智能不仅仅是科技巨头的权力游戏,它也可能是人工智能领域的下一个飞跃。加利福尼亚州的Rigetti Computing公司刚刚使用其原型量子芯片之一在其云平台上运行机器学......

人工智能民主化能否实现取决于科技巨头
人工智能民主化能否实现取决于科技巨头

[2017-12-29]  我们经常听到像谷歌和微软这样的公司说他们希望人工智能民主化。这是一个很好的词,民主化。 但这些公司如何界定“民主化”还不清楚,像AI本身一样,它似乎有点炒作的味道...

美国Natilus公司试飞水上无人货机 设计简单成本降低
美国Natilus公司试飞水上无人货机 设计简单成本降低

[2017-12-28]  Natilus创业公司成立于2014年,其梦想是建造大型无人机,以半价提供比船舶快得多国际货运。在十二月份,Natilus计划在旧金山湾测试一个9米翼展的小型原型无人机的水上滑行能力......

助力卷积神经网络时空特征学习 史上最大行人重识别视频数据集被提出
助力卷积神经网络时空特征学习 史上最大行人重识别视频数据集被提出

[2017-12-25]  本文提出了一个大型的、长序列的、用于行人重识别的视频数据集,简称LVreID。与现有的同类数据集相比,该数据集具有以下特点:1)长序列:平均每段视频序列长为200帧,包含丰......

机器人iCub作为嵌入式AI的标准机器人研究平台的重要性
机器人iCub作为嵌入式AI的标准机器人研究平台的重要性

[2017-12-24]  机器人的研究在过去10年中得益于一个具有嵌入式人工智能(AI)的标准化开源平台——人形机器人iCub。iCub最初在意大利被创建,如今在欧洲、美国、韩国、新加坡和日本的实验室......

基于生物启发的机器人很容易适应丢失附属器官
基于生物启发的机器人很容易适应丢失附属器官

[2017-12-17]  很多机器人被设计应用在危险环境,如灾难现场。在这些地方,他们的运动系统完全有可能被损坏。那这样会吓跑这些机器人吗?也许不是,如果它们像日本的东北和北海道大学创造的......

7种常见的机器人焊接类型
7种常见的机器人焊接类型

[2017-12-17]  机器人焊接是工业领域最常见的机器人应用之一,近几十年来主要由汽车行业驱动。机器人焊接在完成大批量,重复性的焊接任务时效率最高。...

农业将为高科技行业 农业机器人的应用领域
农业将为高科技行业 农业机器人的应用领域

[2017-12-17]  农业正在迅速成为一个令人兴奋的高科技产业,吸引了新专业人士,新公司和新投资者。技术发展迅速,不仅提高了农民的生产能力,而且促进了我们所知道的机器人和自动化技术的发展。...