爱吧机器人网 » 技术 > 神经网络 > 正文

神经网络是怎样理解图片的?

核心提示:我们总是听说人工智能在图像识别上超越了人类,刷脸也逐渐成了生活中司空见惯的事儿。这些图像识别技术背后,通常是深度神经网络。

我们总是听说人工智能在图像识别上超越了人类,刷脸也逐渐成了生活中司空见惯的事儿。这些图像识别技术背后,通常是深度神经网络。

不过,神经网络究竟是怎样认识图像的?

神经网络
 

特征可视化这个强大的工具,就能帮我们理解神经网络内部的世界,知道它们的工作原理。

谷歌研究员Christopher Olah、Alexander Mordvintsev和Ludwig Schubert今天在distill博客上发文深度探索了特征可视化这个问题,并顺便介绍了一些新trick。

distill.pub是Olah等人今年3月推出的机器学习网站,会不定期发表文章,以可视化、可交互的方式来展示机器学习研究成果。

下面,量子位对这篇文章做个简要的介绍:

在2015年谷歌推出的DeepDream基础上,经过AI研究界后来的共同努力,现在,计算机视觉模型中每一层所检测的东西都可以可视化出来。经过在一层层神经网络中的传递,会逐渐对图片进行抽象:先探测边缘,然后用这些边缘来检测纹理,再用纹理检测模式,用模式检测物体的部分……

ImageNet训练的GoogLeNet的特征可视化图
 

上面是ImageNet训练的GoogLeNet的特征可视化图,我们可以从中看出它的每一层是如何对图片进行抽象的。

在神经网络处理图像的过程中,单个的神经元是不能理解任何东西的,它们需要协作。所以,我们也需要理解它们彼此之间如何交互。

通过在神经元之间插值,我们可以更好地理解他们是如何彼此交互的。下图就展示了两个神经元是如何共同表示图像的。

不同神经元组合在一起会得到什么结果
 

Distill原文中的这个例子,能够动手探索不同神经元组合在一起会得到什么结果。

当然,这篇文章还介绍了一些特征可视化的trick。

在进行特征可视化时,得到的结果通常会布满噪点和无意义的高频图案。这些高频图案似乎和strided convolution或者池化关系密切。

神经网络
 

我们想更好地理解神经网络模型是如何工作的,就要避开这些高频图案。这时所用的方法是进行预先规则化,或者说约束。改变梯度也是一种方法,这种优化方法称为预处理(preconditioning)。

当然,了解神经网络内部的工作原理,也是增强人工智能可解释性的一种途径,而特征可视化正是其中一个很有潜力的研究方向,谷歌的几位研究员将其视为帮人类理解神经网络的一个基础模块,可以与其他工具结合使用。


上一篇:TensorFlow下构建高性能神经网络模型的最佳实践
下一篇:如何将人工神经网络与自然历史科学想结合

本周栏目热点

重磅论文 | 动态神经网络工具包DyNet比Theano和TensorFlow更快

[2018-01-17]  近日,来自卡内基梅隆大学、日本奈良先端科学技术大学、Google DeepMind、以色列巴伊兰大学、艾伦人工智能研究所、IBM T J Watson 研究中心、澳大利亚墨尔本大学、约翰......

神经网络结构在命名实体识别(NER)中的应用

[2018-01-23]  近年来,基于神经网络的深度学习方法在自然语言处理领域已经取得了不少进展。作为NLP领域的基础任务—命名实体识别(Named Entity Recognition,NER)也不例外,神经网络结......

为什么很难训练深度神经网络?

[2018-01-23]  在这篇文章中,我将解释在深度神经网络训练中一个常见的误解。似乎大家都认为,训练深度神经网络很难的原因主要是因为梯度消失(或爆炸)的问题。“梯度消失”是指通过隐藏层从......

卷积神经网络入门这一篇就够了

[2018-01-23]  CNN的基本结构包括两层,其一为特征提取层,每个神经元的输入与前一层的局部接受域相连,并提取该局部的特征。一旦该局部特征被提取后,它与其它特征间的位置关系也随之确定下......

神经网络是怎样理解图片的?

[2018-01-23]  我们总是听说人工智能在图像识别上超越了人类,刷脸也逐渐成了生活中司空见惯的事儿。这些图像识别技术背后,通常是深度神经网络。...

精选推荐

CES 2018:英特尔推出49量子位芯片争夺量子霸权
CES 2018:英特尔推出49量子位芯片争夺量子霸权

[2018-01-10]  在与Google、IBM的一场关于建立量子计算系统的马拉松比赛中,英特尔通过了一个关键的里程碑。近日,这个科技巨头已经推出了一个49个量子位 ...

从AI中窥探人性
从AI中窥探人性

[2018-01-03]  人们对人造智能的恐惧早已成为科幻书籍和电影的极好题材。但现在,一些同样的担忧开始影响关于现实世界AI技术的政策讨论。如果这样的担忧演变成为一种技术恐慌...

2017年:AI渗入云端
2017年:AI渗入云端

[2017-12-29]  云中的人工智能不仅仅是科技巨头的权力游戏,它也可能是人工智能领域的下一个飞跃。加利福尼亚州的Rigetti Computing公司刚刚使用其原型量子芯片之一在其云平台上运行机器学......

人工智能民主化能否实现取决于科技巨头
人工智能民主化能否实现取决于科技巨头

[2017-12-29]  我们经常听到像谷歌和微软这样的公司说他们希望人工智能民主化。这是一个很好的词,民主化。 但这些公司如何界定“民主化”还不清楚,像AI本身一样,它似乎有点炒作的味道...

美国Natilus公司试飞水上无人货机 设计简单成本降低
美国Natilus公司试飞水上无人货机 设计简单成本降低

[2017-12-28]  Natilus创业公司成立于2014年,其梦想是建造大型无人机,以半价提供比船舶快得多国际货运。在十二月份,Natilus计划在旧金山湾测试一个9米翼展的小型原型无人机的水上滑行能力......

助力卷积神经网络时空特征学习 史上最大行人重识别视频数据集被提出
助力卷积神经网络时空特征学习 史上最大行人重识别视频数据集被提出

[2017-12-25]  本文提出了一个大型的、长序列的、用于行人重识别的视频数据集,简称LVreID。与现有的同类数据集相比,该数据集具有以下特点:1)长序列:平均每段视频序列长为200帧,包含丰......

机器人iCub作为嵌入式AI的标准机器人研究平台的重要性
机器人iCub作为嵌入式AI的标准机器人研究平台的重要性

[2017-12-24]  机器人的研究在过去10年中得益于一个具有嵌入式人工智能(AI)的标准化开源平台——人形机器人iCub。iCub最初在意大利被创建,如今在欧洲、美国、韩国、新加坡和日本的实验室......

基于生物启发的机器人很容易适应丢失附属器官
基于生物启发的机器人很容易适应丢失附属器官

[2017-12-17]  很多机器人被设计应用在危险环境,如灾难现场。在这些地方,他们的运动系统完全有可能被损坏。那这样会吓跑这些机器人吗?也许不是,如果它们像日本的东北和北海道大学创造的......

7种常见的机器人焊接类型
7种常见的机器人焊接类型

[2017-12-17]  机器人焊接是工业领域最常见的机器人应用之一,近几十年来主要由汽车行业驱动。机器人焊接在完成大批量,重复性的焊接任务时效率最高。...

农业将为高科技行业 农业机器人的应用领域
农业将为高科技行业 农业机器人的应用领域

[2017-12-17]  农业正在迅速成为一个令人兴奋的高科技产业,吸引了新专业人士,新公司和新投资者。技术发展迅速,不仅提高了农民的生产能力,而且促进了我们所知道的机器人和自动化技术的发展。...