爱吧机器人网 » 技术 > 机器学习 > 正文

2018年值得关注的10种机器学习工具

核心提示:2017年是机器学习大放异彩的一年,这归功于众多公司广泛而深入地研究和开发更新颖、更高效的工具和框架。这里介绍,有望在2018年大行其道的10种机器学习的工具和框架。

2017年是机器学习大放异彩的一年,这归功于众多公司广泛而深入地研究和开发更新颖、更高效的工具和框架。这里介绍,有望在2018年大行其道的10种机器学习的工具和框架。
 
\
 
1.亚马逊Sagemaker
 
AWS re:Invent 2017上宣布的一款重大产品就是正式发布的亚马逊Sagemaker,这种新的框架简化了构建机器学习模型并部署到云端的任务。
 
这项服务对于并不深入了解机器学习的开发人员来说非常有用,因为它为开发人员提供了一系列预先构建的开发环境,基于流行的Jupyter笔记本格式。如果数据科学家不希望花费大量时间,就可以在AWS上构建有效的机器学习系统,并对性能进行微调,就会发现这项服务大有用处。
 
相关链接:
 
https://datahub.packtpub.com/machine-learning/amazon-sagemaker-machine-learning-service/
 
2.DSSTNE
 
DSSTNE(通常名为Destiny)是亚马逊提供的另一款产品,这种开源库被用于开发机器学习模型。它的主要优势在于可以用来训练和部署处理稀疏输入的推荐模型。使用DSSTNE开发的模型经训练后可以使用多个GPU,具有可扩展性,并针对快速性能进行了优化。
 
该库在GitHub上有近4000颗星,它是2018年值得关注的另一款工具!
 
相关链接:https://github.com/amzn/amazon-dsstne
 
3.Azure机器学习工作台
 
早在2014年,微软就发布了Azure机器学习工具,将机器学习和人工智能功能放到云端。不过这严格来说是一种纯云服务。在今年9月召开的Ignite 2017大会上,微软宣布了下一代Azure端机器学习工具,通过Azure机器学习工作台,为众多企业组织带来机器学习功能。
 
Azure机器学习工具台是一个跨平台客户软件,它在Windows机器和苹果机器上都可以运行。它是为想要执行数据操纵和处理任务的数据科学家和机器学习开发人员量身打造的。它为确保可扩展性而构建,用户可以从一系列广泛的数据源获得直观的洞察力,并用于数据建模任务。
 
相关链接:https://azure.microsoft.com/en-in/services/machine-learning-services/
 
4.Neon
 
早在2016年,英特尔宣布斥资3.5亿美元收购Nervana,打算成为人工智能市场的大玩家。Nervana是一家人工智能初创公司,一直在为机器学习开发软硬件。有了Neon,他们现在拥有一个快速、高性能的深度学习框架,专门为了在最近宣布的Nervana神经网络处理器上运行而设计。
 
Neon在设计当初力求易于使用,并支持与iPython笔记本集成,它支持常见的深度学习模型,比如CNN、RNN、LSTM及其他模型。该框架显示出日臻完善的迹象,在GitHub上有3000多颗星。Neon势必会在未来几年挑战几大深度学习库。
 
相关链接:https://github.com/NervanaSystems/neon
 
5.微软DMLT
 
企业在机器学习方面面临的主要挑战之一是,需要迅速扩展模型,在尽量减少资源使用的同时,又不牺牲性能。微软的分布式机器学习框架(DMLT)旨在做到这一点。DMLT由微软开放源代码,那样它可以从社区获得更广泛的支持。它让机器学习开发人员和数据科学家拿来单机器算法后可以扩大其规模,进而构建高性能分布式模型。
 
DMLT主要专注于分布式机器学习算法,让你可以轻松地执行诸如字嵌入、采样和梯度提升之类的任务。该框架目前还不支持对深度学习模型进行训练,不过我们预计这项功能很快就会被添加到该框架中。
 
相关链接:http://www.dmtk.io/
 
6.谷歌云机器学习引擎
 
云机器学习引擎被认为是谷歌主要的机器学习产品,它让你可以比较轻松地针对各种各样的数据来构建机器学习模型。该平台充分利用流行的Tensorflow机器学习框架,可用于执行大规模预测分析。它还让你可以使用流行的HyperTune功能,对机器学习模型的性能进行微调和优化。
 
由于无服务器架构支持自动监控、配置和扩展,机器学习引擎确保你只需要为想要训练哪种机器学习模型而操心。这项功能尤其适用于期望外出时可以构建大规模模型的机器学习开发人员。
 
相关链接:https://cloud.google.com/ml-engine/
 
7.苹果Core ML
 
Core ML框架由苹果开发,旨在帮助iOS开发人员构建更智能的应用程序,它是让Siri更智能的秘诀。它充分利用CPU的功能和GPU的功能,让开发人员得以构建不同类型的机器学习和深度学习模型,然后这些模型可以无缝集成到iOS应用程序中。Core ML支持所有常用的机器学习算法,比如决策树、支持向量机和线性模型等等。
 
Core ML的功能针对实际环境的诸多使用场合,比如自然语言处理和计算机视觉等,因而外出时可以在苹果设备上分析数据,无需导入到模型来学习。
 
相关链接:https://developer.apple.com/machine-learning/
 
8.苹果Turi Create
 
在许多情况下,iOS开发人员想要定制希望集成到所开发的应用程序中的机器学习模型。为此,苹果推出了Turi Create。该库让你得以专注于手头的任务,而不是决定使用哪种算法。那样就可以在数据集、模型需要运行的规模以及需要将模型部署到哪个平台方面做到很灵活。
 
Turi Create用起来很方便,可用于为推荐、图像处理、文本分类及众多任务构建自定义模型。你只需要对Python有所了解,即可上手!
 
相关链接:https://github.com/apple/turicreate
 
9.Convnetjs
 
深度学习不仅仅出现在超级计算机和机器集群上,现在它还切实出现在你的互联网浏览器上!现在你使用流行的基于Javascript的Convnetjs库,就可以直接在浏览器上训练先进的机器学习和深度学习模型,不需要CPU或GPU。
 
该库最初由特斯拉公司的现任人工智能主管安德烈?卡帕锡(Andrej Karpathy)编写,此后被开源,在社区的积极贡献下有所扩展。你可以直接在浏览器上轻松训练深度神经网络,甚至训练强化学习模型,这有赖于这个非常独特而有用的库提供支持。这个库适合不想购买专业硬件来训练计算密集型模型的那些人。Convnetjs在GitHub上有近9000颗星,它俨然是2017年的明星项目之一,迅速成为深度学习方面的首选库。
 
相关链接:http://cs.stanford.edu/people/karpathy/convnetjs/
 
10.BigML
 
BigML是一家知名的机器学习公司,为开发机器学习模型提供了一个易于使用的平台。使用BigML的REST API,你可以在其平台上顺畅无阻地训练机器学习模型。它让你可以执行不同的任务,比如异常检测和时间序列预测,还可以构建执行实时预测分析的应用程序。
 
借助BigML,你可以在本地或在云端部署模型,可以灵活地选择运行机器学习模型所需要的那种环境。BigML恪守承诺,力求“使机器学习对每个人而言都异常简单”。
 
由于微软、亚马逊和谷歌都竞相成为人工智能领域的霸主,2018年可能会是人工智能领域发展迎来突破的一年。除此之外还有旨在为用户简化机器学习的各种开源库,还有一大堆的工具和框架需要密切关注。令人兴奋的是,它们都有能力成为下一个TensorFlow,带来下一场AI颠覆。
 
相关链接:https://bigml.com/

上一篇:40道题检测你的机器学习掌握程度
下一篇:图灵奖得主Judea Pearl:机器学习无法成为强AI基础,突破口在“因果革命”

本周栏目热点

深度学习之生成式对抗网络(GAN)入门指南

[2017-12-25]  本文将介绍GAN的基础概念及其工作方式,并辅之以有趣案例的实现方法和重要资源,方便初学者训练、使用。2014年Ian J Goodfellow等人首先提出生成对抗网络(Generative Ad......

实用:用深度学习方法修复医学图像数据集

[2018-05-04]  医学图像数据很难处理,经常包含旋转倒置的图像。这篇文章介绍如何利用深度学习以最小的工作量来修复医疗影像数据集,缓解目前构建医疗 AI 系统中收集和清洗数据成本大的问题...

Graphcore 研发出AI芯片让机器学习提速百倍

[2017-12-15]  作为英国最热门的创业公司之一,Graphcore专注于加速复杂机器学习模型的训练以及推断过程。他们正在开发人工智能芯片,以降低企业数据中心和云端使用AI应用程序的成本,并将性......

解密百变机器人一天的工作

[1970-01-01]  你造吗?百变机器人是这样工作的    偶开了一个小的医疗器械工厂,不久前,面试了一个最让我满意的工人:他高智商,好体力,一天可以工 ...

深度学习算法研究现状

[2017-12-12]  深度学习便是人工智能领域的最新热点。它被广泛的运用在图像识别、语义理解等等方面。近来谷歌研究院的围棋机器人Alpha Go,也部分使用了深度学习技术。...

成功构建一个机器学习模型需避免这9个错误

[2018-07-10]  随着越来越多的团队使用预测模型,企业领导者和管理者必须意识到可能扭曲团队工作结果的常规问题。 以下是要避免的九个常见问题,最好的做法是遵循,以实现一个可靠的机器学......

Judea Pearl:传统机器学习于因果层级底层,达成完备AI的7个工具

[2018-07-12]  机器学习的巨大成功带来了 AI 应用的爆炸式增长以及对具备人类级别智能的自动化系统不断增长的期望。然而,这些期望在很多应用领域中都遇到了基本的障碍。其中一个障碍就是......

精选推荐

机器人从工业走向家庭  库卡KUKA目标是引领中国市场
机器人从工业走向家庭 库卡KUKA目标是引领中国市场

[2017-12-08]  机器人正在改变着人们的生活方式,而库卡KUKA想要在中国这个大蛋糕中占有一块大份额,库卡公司正在引领市场...

机器人工程师具体都做什么?
机器人工程师具体都做什么?

[2017-12-08]  机器人工程师是幕后设计师,负责创建机器人和机器人系统,能够执行人类无法完成或不愿意完成的任务。 通过他们的创造,机器人工程师帮助工作更安全,更轻松,更高效,特别是......

通过对抗性图像黑入大脑
通过对抗性图像黑入大脑

[2018-03-02]  在上面的图片中,左边是一张猫的照片。在右边,你能分辨出它是同一只猫的图片,还是一张看起来相似的狗的图片?这两张图片之间的区别在于, ...

揭秘达芬奇手术机器人
揭秘达芬奇手术机器人

[2018-04-19]  达芬奇手术系统是由美国Intuitive Surgical公司制造的机器人手术系统。美国食品和药物管理局(FDA)于2000年通过该标准,旨在利用微创手段 ...

人工智能民主化能否实现取决于科技巨头
人工智能民主化能否实现取决于科技巨头

[2017-12-29]  我们经常听到像谷歌和微软这样的公司说他们希望人工智能民主化。这是一个很好的词,民主化。 但这些公司如何界定“民主化”还不清楚,像AI本身一样,它似乎有点炒作的味道...

2022年全球工业机器人市场将达到790亿美元
2022年全球工业机器人市场将达到790亿美元

[2017-09-04]  预计到 2022年, 全球工业机器人市场将达到790亿美元, 并在预测期内登记11 5% 的复合年增长率。随着发展中国家中小型企业需求的不断增长, 采用自动化技术以确保生产质量......

Crossbar将电阻式RAM推入嵌入式AI
Crossbar将电阻式RAM推入嵌入式AI

[2018-05-17]  电阻RAM技术开发商Crossbar表示,它已与航空航天芯片制造商Microsemi达成协议,允许后者在未来的芯片中嵌入Crossbar的非易失性存储器。此举是在先进制造业节点的领先代工厂选......

担心机器换人?自1950年以来只有一个职业被机器彻底取代

[2017-03-21]  虽然有很多关于机器人取代工人的担心,但哈佛经济学家James Bessen的论文指出,在过去的67年里机器人仅仅淘汰掉人类工作中的一个。在1950 ...