爱吧机器人网 » 技术 > 神经网络 > 正文

可编辑神经网络,有望简化深度学习?

\
图片来自Andrew Buchanan的《Unsplash》
 
深度学习是一个计算繁重的过程。 降低成本一直是 Data curation 的一大挑战。 关于深度学习神经网络大功耗的训练过程,已经有研究人员发表了其碳足迹(温室气体排放集合)的报告。

情况只会越来越复杂,因为我们正迎来一个充斥着大量的机器学习应用程序的未来。但所幸的是,我们也看到一些能够让训练神经网络的过程变得更高效的策略正在被发明出来。

以更改单个输入来更新神经网络的预测可能会降低其他输入的性能。 当前,业内通常使用两种解决方法:

1、在原始数据集上重新训练模型,并补充解决错误的样本;
2、使用手动缓存(例如查找表)来代替对有问题的样本的模型预测;

虽然简单,但是这种方法对于输入中的细微变化并不稳健。 例如,在自然语言处理任务中,它不会概括出同一对象的不同观点或释义。 因此,在ICLR 2020的一篇正在审核的论文中,尚未公开姓名的作者提出了一种称为“可编辑训练”的替代方法。

神经网络的“修补”

\
可编辑神经网络也属于元学习范例,因为它们基本上是“学习允许有效修补”。

有效的神经网络修补问题不同于持续学习,因为研究人员认为,可编辑的训练设置本质上不是顺序的。

在这种情况下进行编辑意味着在不影响其他输入的情况下,更改输入对子集的模型预测(与错误分类的对象相对应)。

为此,构想出了编辑器功能,即一种给定约束的参数功能。 换句话说,非正式地,这是一个调整参数以满足给定约束的函数,该约束的作用是强制执行模型行为所需的更改。

对于图像分类实验,使用标准训练/测试分割获取小的CIFAR-10数据集。训练数据集进一步增加了随机裁剪和随机水平翻转。

在此数据集上训练的所有模型都遵循ResNet-18架构,并使用具有默认超参数的Adam优化器。

为深度神经网络实现Edit的自然方法是使用梯度下降。 根据作者的观点,标准的梯度下降编辑器可以用动量(momentum)、自适应学习率(adaptive learning rates)进一步增强。

但是,在许多实际情况下,绝大部分这些编辑都不会发生。 例如,比起“卡车”或“船”,以前被分类为“飞机”的图像更有可能需要编辑为“鸟”。 为了解决这个问题,作者采用了自然对抗样本(NAE)数据集。

该数据集包含7500个自然图像,这些图像很难用神经网络进行分类。 如果不进行编辑,经过预训练的模型可以正确地预测NAE中不到1%的数据,但是正确的答案可能在按预测概率排序的前100个类别中。

总结

可编辑训练与对抗训练有些相似,后者是对抗攻击防御的主要方法。 这里的重要区别在于,可编辑训练旨在学习模型,可以有效地纠正某些样本上的行为。

同时,对抗训练会产生对某些输入扰动具有鲁棒性的模型。 但人们可以使用可编辑训练来针对合成和自然对抗示例有效地覆盖模型漏洞。

在许多深度学习应用程序中,单个模型错误可能导致毁灭性的财务、名誉乃至生命危险。 因此,至关重要的是要尽快纠正出现的模型错误。

可编辑训练,一种与模型无关的训练技术,可鼓励对训练后的模型进行快速编辑,并且这种方法的有效性对于大规模图像分类和机器翻译任务也很有希望。


作者:Ram Sagar
爱吧机器人网原创编译,转载请注明。
来源:https://analyticsindiamag.com/editable-neural-networks-deep-learning-efficiency/


上一篇:MAERI:可重构互联架构赋能DNN加速器灵活数据流映射
下一篇:MIT用深度学习处理3D点云数据 应用于无人汽车等领域
精选推荐
哈佛大学《自然》发表新驱动技术,让飞行机器人悬停且不受损伤
哈佛大学《自然》发表新驱动技术,让飞行机器人悬停且不受损伤

[2019-11-06]  哈佛大学研究人员发表在《自然》杂志上的一项最新研究,他们开发了一种由柔软的人造肌肉驱动的机器人蜜蜂(RoboBee),这种机器人在撞墙、 ...

为未来战场创造更有效的机器人 美国陆军研究人工纳米马达
为未来战场创造更有效的机器人 美国陆军研究人工纳米马达

[2019-10-11]  为了使机器人在战斗中更有效、更多才多艺地成为士兵的战友,美国陆军研究人员正在执行一项任务,即研究肌肉分子生命功能的价值,以及复制过 ...

集群机器人领域最新研究:一种用于探测未知环境的微型无人机群
集群机器人领域最新研究:一种用于探测未知环境的微型无人机群

[2019-10-26]  (图:无人机扩散至不同方向来探索环境。当一个无人机注意到另一个无人机在它的首选方向,它将试图飞到另一个方向。若首选方向冲突,低优先 ...

从AI中窥探人性
从AI中窥探人性

[2018-01-03]  人们对人造智能的恐惧早已成为科幻书籍和电影的极好题材。但现在,一些同样的担忧开始影响关于现实世界AI技术的政策讨论。如果这样的担忧演变成为一种技术恐慌...

九台“猎豹”机器人组队踢球,麻省理工高材生们的高级趣味
九台“猎豹”机器人组队踢球,麻省理工高材生们的高级趣味

[2019-11-09]  本周,在麻省理工学院10号楼外草坪上展开了一场别开生面的足球比赛。在绿草如茵的基利安球场上,一群由人工智能驱动的机器人就是这场比赛的 ...

MIT研制出可以像植物一样生长的机器人
MIT研制出可以像植物一样生长的机器人

[2019-11-09]  麻省理工学院开发了一种新型机器人,这种机器人可以本质上自我延伸,其生长方式与植物幼苗向上生长的方式惊人相似。值得注意的是,研究人员 ...

人工智能准确预测患者一年内的死亡风险,原理却无法解释
人工智能准确预测患者一年内的死亡风险,原理却无法解释

[2019-11-13]  图片来自BURGER PHANIE SCIENCE PHOTO LIBRARY美国最新研究显示,人工智能通过查看心脏测试结果,以高达85%以上的准确率预测了一个人在一 ...

如何让人工智能机器人快速自我纠正错误并吃一堑长一智?
如何让人工智能机器人快速自我纠正错误并吃一堑长一智?

[2017-08-23]  莱斯特大学数学系的研究人员在《Neural Networks》杂志上发表了一篇文章,概述了新算法的数学基础,可以使人工智能收集错误报告并立即纠正,而不影响现有技能 ,同时还会积......

本周栏目热点

飞桨火力全开,重磅上线3D模型:PointNet++、PointRCNN!

[2020-03-26]  11 年前的「阿凡达」让少年的我们第一次戴上 3D 眼镜,声势浩大的瀑布奔流而下,星罗棋布飘浮在空中的群山,无一不体现着对生命的敬意, ...

神经网络结构在命名实体识别(NER)中的应用

[2018-01-17]  近年来,基于神经网络的深度学习方法在自然语言处理领域已经取得了不少进展。作为NLP领域的基础任务—命名实体识别(Named Entity Recognition,NER)也不例外,神经网络结......

从基础概念到数学公式,这是一份520页的机器学习笔记(图文并茂)

[2018-06-19]  近日,来自SAP(全球第一大商业软件公司)的梁劲(Jim Liang)公开了自己所写的一份 520 页的学习教程(英文版),详细、明了地介绍了机器学习中的相关概念、数学知识和各......

50行代码玩转生成对抗网络GAN模型!(附源码)

[2018-07-30]  本文为大家介绍了生成对抗网络(Generate Adversarial Network,GAN),以最直白的语言来讲解它,最后实现一个简单的 GAN 程序来帮助大家加深理解。...

深度神经网络揭示了大脑喜欢看什么

[2019-11-06]  爱吧机器人网编者按:近日,《自然-神经科学》发表了一篇论文,研究人员创建了一种深度人工神经网络,能够准确预测生物大脑对视觉刺激所产 ...