爱吧机器人网 » 技术 > 机器学习 > 正文

机器学习:人工神经网络ANN

神经网络是从生物领域自然的鬼斧神工中学习智慧的一种应用。人工神经网络(ANN)的发展经历的了几次高潮低谷,如今,随着数据爆发、硬件计算能力暴增、深度学习算法的优化,我们迎来了又一次的ANN雄起时代,以深度学习为首的人工神经网络,又一次走入人们的视野。

感知机模型perception

不再处理离散情况,而是连续的数值,学习时权值在变化,从而记忆存储学到的知识

神经元输入:类似于线性回归z =w1x1+w2x2 +⋯ +wnxn= wT・x(linear threshold unit (LTU))
神经元输出:激活函数,类似于二值分类,模拟了生物学中神经元只有激发和抑制两种状态。

神经元输出
 

增加篇值,输出层哪个节点权重大,输出哪一个。

神经元输出
 

采用Hebb准则,下一个权重调整方法参考当前权重和训练效果

Hebb准则
 

#一个感知机的例子

import numpy as np

from sklearn.datasets import load_iris

from sklearn.linear_model import Perceptron

iris = load_iris()

X = iris.data[:, (2, 3)] # petal length, petal width

y = (iris.target == 0).astype(np.int) # Iris Setosa?

per_clf = Perceptron(random_state=42)

per_clf.fit(X, y)

y_pred = per_clf.predict([[2, 0.5]]

之后有人提出,perception无法处理异或问题,但是,使用多层感知机(MLP)可以处理这个问题

def heaviside(z):

return (z >= 0).astype(z.dtype)

def sigmoid(z):

return 1/(1+np.exp(-z))

#做了多层activation,手工配置权重

def mlp_xor(x1, x2, activation=heaviside):

return activation(-activation(x1 + x2 - 1.5) + activation(x1 + x2 - 0.5) - 0.5)

如图所示,两层MLP,包含输入层,隐层,输出层。所谓的深度神经网络,就是隐层数量多一些。

深度神经网络
 
深度神经网络
 
深度神经网络
 

激活函数

以下是几个激活函数的例子,其微分如右图所示

激活函数
 
激活函数
 

step是最早提出的一种激活函数,但是它在除0外所有点的微分都是0,没有办法计算梯度

logit和双曲正切函数tanh梯度消失,数据量很大时,梯度无限趋近于0,

relu在层次很深时梯度也不为0,无限传导下去。

如何自动化学习计算权重——backpropagation

首先正向做一个计算,根据当前输出做一个error计算,作为指导信号反向调整前一层输出权重使其落入一个合理区间,反复这样调整到第一层,每轮调整都有一个学习率,调整结束后,网络越来越合理。

step函数换成逻辑回归函数σ(z) = 1 / (1 + exp(–z)),无论x落在哪个区域,最后都有一个非0的梯度可以使用,落在(0,1)区间。

双曲正切函数The hyperbolic tangent function tanh (z) = 2σ(2z) – 1,在(-1,1)的区间。

The ReLU function ReLU (z) = max (0, z),层次很深时不会越传递越小。

多分类时,使用softmax(logistics激活函数)最为常见。

使用MLP多分类输出层为softmax,隐层倾向于使用ReLU,因为向前传递时不会有数值越来越小得不到训练的情况产生。

以mnist数据集为例

import tensorflow as tf

# construction phase

n_inputs = 28*28 # MNIST

# 隐藏层节点数目

n_hidden1 = 300

n_hidden2 = 100

n_outputs = 10

X = tf.placeholder(tf.float32, shape=(None, n_inputs), name="X")

y = tf.placeholder(tf.int64, shape=(None), name="y")

def neuron_layer(X, n_neurons, name, activation=None):

with tf.name_scope(name):

n_inputs = int(X.get_shape()[1])

# 标准差初始设定,研究证明设为以下结果训练更快

stddev = 2 / np.sqrt(n_inputs)

# 使用截断的正态分布,过滤掉极端的数据,做了一个初始权重矩阵,是input和neurons的全连接矩阵

init = tf.truncated_normal((n_inputs, n_neurons), stddev=stddev)

W = tf.Variable(init, name="weights")

# biases项初始化为0

b = tf.Variable(tf.zeros([n_neurons]), name="biases")

# 该层输出

z = tf.matmul(X, W) + b

# 根据activation选择激活函数

if activation=="relu":

return tf.nn.relu(z)

else:

return z

with tf.name_scope("dnn"):

# 算上输入层一共4层的dnn结构

hidden1 = neuron_layer(X, n_hidden1, "hidden1", activation="relu")

hidden2 = neuron_layer(hidden1, n_hidden2, "hidden2", activation="relu")

# 直接输出最后结果值

logits = neuron_layer(hidden2, n_outputs, "outputs")

# 使用TensorFlow自带函数实现,最新修改成dense函数

from tensorflow.contrib.layers import fully_connected

with tf.name_scope("dnn"):

hidden1 = fully_connected(X, n_hidden1, scope="hidden1")

hidden2 = fully_connected(hidden1, n_hidden2, scope="hidden2")

logits = fully_connected(hidden2, n_outputs, scope="outputs", activation_fn=None)

# 使用logits(网络输出)计算交叉熵,取均值为误差

with tf.name_scope("loss"):

xentropy = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=y, logits=logits)

loss = tf.reduce_mean(xentropy, name="loss")

learning_rate = 0.01

with tf.name_scope("train"):

optimizer = tf.train.GradientDescentOptimizer(learning_rate)

training_op = optimizer.minimize(loss)

with tf.name_scope("eval"):

correct = tf.nn.in_top_k(logits, y, 1)

accuracy = tf.reduce_mean(tf.cast(correct, tf.float32))

init = tf.global_variables_initializer()

saver = tf.train.Saver()

# Execution Phase

from tensorflow.examples.tutorials.mnist import input_data

mnist = input_data.read_data_sets("/tmp/data/")

# 外层大循环跑400次,每个循环中小循环数据量50

n_epochs = 400

batch_size = 50

with tf.Session() as sess:

init.run()

for epoch in range(n_epochs):

for iteration in range(mnist.train.num_examples // batch_size):

X_batch, y_batch = mnist.train.next_batch(batch_size)

sess.run(training_op, feed_dict={X: X_batch, y: y_batch})

acc_train = accuracy.eval(feed_dict={X: X_batch, y: y_batch})

acc_test = accuracy.eval(feed_dict={X: mnist.test.images,y: mnist.test.labels})

print(epoch, "Train accuracy:", acc_train, "Test accuracy:", acc_test)

# 下次再跑模型时不用再次训练了

save_path = saver.save(sess, "./my_model_final.ckpt")

# 下次调用

with tf.Session() as sess:

saver.restore(sess, "./my_model_final.ckpt") # or better, use save_path

X_new_scaled = mnist.test.images[:20]

Z = logits.eval(feed_dict={X: X_new_scaled})

y_pred = np.argmax(Z, axis=1)

超参数设置

隐层数量:一般来说单个隐层即可,对于复杂问题,由于深层模型可以实现浅层的指数级别的效果,且每层节点数不多,加至overfit就不要再加了。

每层神经元数量:以漏斗形逐层递减,输入层最多,逐渐features更少代表性更强。

激活函数选择(activation function):隐层多选择ReLU,输出层多选择softmax


上一篇:分布式机器人走进智能工厂 机器人学习迎来“春天”
下一篇:配备“一键重置”算法 机器人学习变得更方便
精选推荐
这些人型机器人是如此真实,你的肉眼几乎无法区分
这些人型机器人是如此真实,你的肉眼几乎无法区分

[2017-09-03]   我们生活在一个区分现实与幻想变得越来越困难的世界。由于机器人技术的进步,创造人工的人类正在逐渐接近完美的最终目标。我们现在看到的机器人不再只是一块发光二极管,......

机器人工程师具体都做什么?
机器人工程师具体都做什么?

[2017-12-08]  机器人工程师是幕后设计师,负责创建机器人和机器人系统,能够执行人类无法完成或不愿意完成的任务。 通过他们的创造,机器人工程师帮助工作更安全,更轻松,更高效,特别是......

机器人从工业走向家庭  库卡KUKA目标是引领中国市场
机器人从工业走向家庭 库卡KUKA目标是引领中国市场

[2017-12-08]  机器人正在改变着人们的生活方式,而库卡KUKA想要在中国这个大蛋糕中占有一块大份额,库卡公司正在引领市场...

改变保险市场的格局:无人机如何通过更快的估算、响应时间和利益交付来使消费者受益
改变保险市场的格局:无人机如何通过更快的估算、响应时间和利益交付来

[2018-12-08]  市场研究公司IHS Markit预测,到2020年,专业无人机市场将通过农业,能源和建筑等行业利用测量,制图,规划等技术实现77 1%的复合年增长率(CAGR)。与此同时,消费者无人......

这个外科手术机器人可以为患者“量身定制”
这个外科手术机器人可以为患者“量身定制”

[2019-07-12]  世界首创,来自澳大利亚机器人视觉研究中心的研究人员正在推动手术机器人的发展边界,他们创造了可定制的、小型化的手术机器人,能够唯一地 ...

机器人iCub作为嵌入式AI的标准机器人研究平台的重要性
机器人iCub作为嵌入式AI的标准机器人研究平台的重要性

[2017-12-24]  机器人的研究在过去10年中得益于一个具有嵌入式人工智能(AI)的标准化开源平台——人形机器人iCub。iCub最初在意大利被创建,如今在欧洲、美国、韩国、新加坡和日本的实验室......

英伟达用联合学习创建医学影像AI 可共享数据和保护隐私
英伟达用联合学习创建医学影像AI 可共享数据和保护隐私

[2019-10-14]  英伟达(Nvidia)和伦敦国王学院(King’s College London)的人工智能研究人员利用联合学习训练了一种用于脑肿瘤分类的神经网络, ...

南加州大学机器人学家:机器人更适合粗暴的爱
南加州大学机器人学家:机器人更适合粗暴的爱

[2019-11-07]  图片来自JOHN MADERE GETTY IMAGES打是疼骂是爱,当人类粗暴的将物体从机器人手中敲掉,看似残忍,实际上却能帮助机器人找到最好的握持物 ...

本周栏目热点

深度学习反向传播算法(BP)原理推导及代码实现

[2017-12-19]  分析了手写字数据集分类的原理,利用神经网络模型,编写了SGD算法的代码,分多个epochs,每个 epoch 又对 mini_batch 样本做多次迭代计算。这其中,非常重要的一个步骤,......

如何在机器学习项目中使用统计方法的示例

[2018-07-23]  事实上,机器学习预测建模项目必须通过统计学方法才能有效的进行。在本文中,我们将通过实例介绍一些在预测建模问题中起关键作用的统计学方法。...

[2017-08-28]  模拟退火(Simulated Annealing,简称SA)是一种通用概率算法,用来在一个大的搜寻空间内找寻命题的最优解。1、固体退火原理:将固体加温 ...

Machine Learning-感知器分类算法详解

[2018-05-31]  今天我们来讲解的内容是感知器分类算法,本文的结构如下:什么是感知器分类算法,在Python中实现感知器学习算法,在iris(鸢尾花)数据集上训练一个感知器模型,自适应线性神......

机器人是怎么深度学习的?

[2016-03-29]      一个人独处时,感觉有点孤单,怎么办?微软亚洲研究院推出的微软小冰,或许 ...