爱吧机器人网 » 技术 > 人工智能 > 正文

人工智能整体技术体系和国内外发展情况

核心提示:近年来,人工智能已经成为国际科技竞争的新焦点。作为多学科交叉结果和通用型技术,人工智能技术同上下游的相关技术和应用一起形成了错综复杂的技术体系网络。这一网络目前初见雏形,

人工智能作为新一轮产业变革的核心驱动力,将进一步释放历次科技革命和产业变革积蓄的巨大能量,并创造新的强大引擎,推动智能经济和智能社会的发展。本文尝试从根技术、核心共性技术、智能应用技术、典型应用场景四个层面勾勒人工智能技术的整体技术体系和国内外发展情况。


近年来,人工智能已经成为国际科技竞争的新焦点。作为多学科交叉结果和通用型技术,人工智能技术同上下游的相关技术和应用一起形成了错综复杂的技术体系网络。这一网络目前初见雏形,但仍处于快速更新、剧烈变化的动态发展状态。经过多方资料的汇总和梳理,本文尝试从根技术、核心共性技术、智能应用技术、典型应用场景四个层面勾勒人工智能技术的整体技术体系和国内外发展情况。初步研判,目前人工智能产业的发展存在着两个主要趋势:一是不断拓展、深挖核心技术;二是积极寻求在传统产业的应用空间。

\
【点击图片查看大图】


\
【点击图片查看大图】



根技术:广泛融合,不断扩展


数学与工程学始终是人工智能发展过程中的重要基石。例如1956年达特茅斯会议以来,控制论曾长期处于人工智能研究的主导理论地位;机器学习算法的发展过程则可视为数学方法不断演进的过程。

80年代人工智能的主流理论逐渐演化为信息论,同期也诞生了深度学习算法。深度学习算法能够在近年获得成功除了得益于自身算法的不断完善,还应归因于三十年来信息学与计算机科学的快速发展。尤其是大数据技术的发展提供了前所未有的丰富数据,使得各类机器学习算法获得了充足的学习资源;而计算性能的提升也保证了其潜力的充分发挥。

出于对人类智能的追求,脑科学与认知科学在人工智能的各个发展阶段都是主要参与学科之一。例如人工神经网络的数学理论雏形就是在心理学家Warren Mcculloch的参与下产生的。当前类脑智能更被认为是人工智能的未来发展方向之一,因此对脑科学与认知科学的研究仍将受到广泛关注。相关研究可以分为关注基因、蛋白质、神经元、化学信号、电信号的“硬件研究”和关注认知、行为、心理的“软件研究”两大类。目前普遍认为后者对于类脑智能的研发更具指导意义。

多项不同根技术的广泛融合成就了当前人工智能技术的高速发展。同时这一融合范围还在不断扩大。例如随着智能芯片的发展,集成电路相关技术已经成为了人工智能技术体系的一部分;量子计算也被纳入人工智能的技术网络中。人工智能的多学科交叉特色将会越来越显著。



核心共性技术


核心共性技术大致可以分为人工智能芯片、基础算法和系统平台三类。在具体应用中,各种不同算法是系统平台的基础;人工智能芯片作为硬件是算法的基础。但在实际的创新链中,人工智能芯片也是基于基础算法的特点、需求和指导而开发的。基础算法是人工智能技术发展的根本核心。

1  基础算法:创新活跃,任重道远

早期计算智能算法主要模仿了人类智能的“知识表示与推理”功能。虽然出现了专家系统、几何证明机、“深蓝”等案例,但整体上仍存在效率低下、维护性差、性价比低等难以克服的问题,未能取得商业成功。

机器学习算法则更进一步,在形式上模拟了人脑的学习功能,即重复训练次数多的“思考”过程会被强化。这一突破性进步能够大大提升人工智能系统的运行效率,并降低编码成本。人工神经网络算法是机器学习算法的重要分支,初步借鉴了人脑神经元的某些运算机制。深度学习算法是人工神经网络算法的一个拓展,通过多层神经网络,形成比浅层结构简单学习更强大的从少数样本集中归纳数据集本质特征的能力。近年来,算法方面的研究始终处于频繁更新、快速迭代的状态。目前单纯的深度学习算法已经略显“过时”。在其基础上开发的卷积神经网络、循环神经网络、递归深度神经网络等成为最新前沿。此外现有算法的交叉组合,例如深度学习算法同强化学习算法综合形成的深度强化学习方法等也逐步成为新的热点。在计算智能算法和机器学习算法的研发方面,欧美大学占据绝对的领跑地位。全球排名前30的高校中,美国高校占比最高,达到22家;我国高校无一上榜。

尽管在目前获得了一定的成功,但机器学习算法的机理仍然是统计拟合、暴力计算,并不具备真正的基于理解的学习、推理和决策能力,因此在应用中仍具有极大的局限性。部分专家甚至认为机器学习算法无法真正解决自然语言翻译、全自主自动驾驶等热点问题。当前比较明确的面向未来的前沿算法基础理论中,高级机器学习仍然无法突破机器学习的框架;量子计算主要是配合高级机器学习的发展;类脑智能计算则被许多专家视为新一代人工智能技术的突破口。近期美、日、德、法、欧盟和以色列等主要国家和地区都开展了脑科学与人工智能的联合研究,但众多现有类脑智能研究都主要以利用人工智能工具研究脑科学为主,对人工智能研究的推动不足。将两方面研究紧密结合的机构仅有麻省理工学院、卡内基·梅隆大学和加州大学伯克利分校等少数高校。整体而言,新一代人工智能的基础算法研究仍然任重道远。

2  人工智能芯片:多路线竞争,分领域发展

目前的人工智能芯片根据技术路线可分类三类。首先是通用型的CPU及GPU芯片。CPU的架构和指令集对神经网络计算的兼容度不够,性价比和运算效率偏低。但英特尔、ARM在新的CPU产品Xeon Phi和DynamIQ中强化了对神经网络计算的支持。GPU的架构比CPU更有利于相关算法的运行。传统的GPU厂商英伟达和AMD分别推出了Tesla V100和RadeonInstinctMI25来开拓人工智能芯片的市场空间。英特尔也通过收购的方式推出了Nervana以进入GPU领域。

第二类是FPGA芯片。FPGA具有可定制的特点,使用者可以对芯片进行二次开发使其更加适宜特定的运算环境。由于牺牲了通用性,FPGA芯片的价格相对CPU和GPU而言较为便宜。目前Xilinx 、Altera、Microsemi、Lattice等少数厂商基本垄断了 FPGA的生产。英特尔通过收购Altera也进入了FPGA芯片的生产环节。基于外购芯片,微软、百度等领先企业均具有较强的二次开发能力。百度已经推出了基于FPGA的百度大脑芯片。

第三类是ASIC芯片。此类芯片是彻底的专用芯片,也不具备编辑功能。设计新ASIC芯片的前期投入较高,但大规模生产后能够实现极低廉的成本。ASIC芯片对特定计算的运行效率极高,但也仅能应用于特定计算。目前ASIC芯片分两个技术方向。(1)脉冲神经网络芯片,以IBM的TureNorth为代表,以脉冲长短模拟大脑神经元间的交流活动。(2)机器学习芯片,以谷歌TPU和我国寒武纪为代表,以概率变化模拟大脑神经元间的交流活动。比较而言,后者直接针对机器学习算法的需要,目前在商业化应用竞争中占据优势,高通的Zeroth即是从早期的脉冲神经网络芯片转为现今的机器学习芯片方向。前者仍需忆阻器等基本原件的进一步发展,但对于类脑算法研究而言有着长远的意义。

整体而言,三类人工智能芯片各有特点,都具有对应的潜在细分市场空间。不同场合下对通用性、成本、性能的不同要求会产生不同的解决方案。苹果A11、华为麒麟970中的人工智能模块以及谷歌TPU都只是用于配合CPU完成特定运算。

3  系统平台:多方混战,抢占地盘

实际应用中,可能被用到的大量不同基础算法需要整合成为集成化、高度兼容的软件工具来发挥作用。较完备的工具软件包形成了稳定的系统环境。围绕一些开源系统往往还会形成全球共享的研究成果交流平台。在系统平台领域抢占话语权,就能在人工智能时代形成类似PC时代Windows系统或手机时代安卓系统的优势市场地位。当前人工智能系统平台处于活跃发展、普遍竞争的状态,尚未产生稳定格局。Facebook、IBM等大公司和许多创业型小公司都推出了自己的开源项目。苹果通过收购Turi公司涉足了这一领域。我国的百度也在近期推出了自己的开源平台PaddlePaddle。谷歌则完全基于其Tensor Flow平台设计出了TPU芯片,在战略层面打通了软硬件市场的布局。



智能应用技术:感知、决策、执行集成化


智能应用技术是核心共性技术基础上的具体应用研究,主要是解决了某种特定类型问题的解决方案。某项专项技术可能用于许多不同的应用场景;特定应用场景也往往包含了多项专项技术。

智能传感器方面,目前国际一流传感器的市场基本被外国公司所垄断,我国的产业和研发实力明显处于劣势。模式识别在广义上既包括一些共性理论,也包括在语音、图像、自然语言分析等方面的具体识别技术,在此分别表述为模式识别理论和感知与理解技术。智能决策分析则主要侧重数据挖掘方向的专项应用。机器人、无人机自动驾驶汽车也开始大量应用基于机器学习的智能控制技术。此外,人机交互也是当前的重点之一。

以往在机器人及自动化领域的研究中,经常依照感知、决策、执行三个环节来分析其技术体系,人工智能的发展则逐步模糊了三者的边界。例如机器视觉既包含基于视觉传感器的感知环节,也是对视觉信号进行分析处理和判断的决策环节。人机交互则同时涉及了以人为对象的感知和执行两个环节。未来人工智能技术将进一步推动感知、决策、执行的集成化水平。



典型应用场景:热点集中,各显神通


以新增企业的业务方向为标准,近年人工智能产业关注度最集中的细分领域为机器视觉、自然语言处理和自动驾驶。这三类专项智能技术所派生的应用场景也是当前人工智能市场的主要热点。例如机器视觉技术发展出的网络图像审核、人脸识别、虹膜识别、设备登录验证、金融身份验证、安防监控等应用;自然语言处理技术发展出的语音输入、机器翻译、拟人交流、智能客服等应用。

这些焦点应用中,比较成熟的自然语言处理、机器视觉及图像识别、语音识别等基本都局限在信息产业之内。能够同实体经济挂钩的自动驾驶虽然获得广泛关注但短期内尚难以突破。目前寻找能够对接传统制造和服务业的应用点是人工智能产业发展的重要任务,也是人工智能“通用型”应用的必然需要。

目前对新应用领域的探索主要分为三种情况。(1)龙头引领,即领先企业的战略意志推动新应用市场的开辟,并利用技术、资金、影响力等方面的优势而暂时处于无人竞争的状态。例如IBM基于沃森所提供的医疗诊断、法律咨询等服务,以及阿里巴巴所提出的城市大脑。(2)主动吸收,即一些专业性较强的行业主动吸收人工智能方法改善自身产品水平,主导者是业内原有的成熟主体而非新兴的人工智能企业。这也是最能体现人工智能“通用型”的应用类型。例如财务分析、科研辅助、交融交易分析等。(3)有待开拓,即相关领域理论上存在应用人工智能的可能,但尚缺乏实用性强、市场空间大的成熟产品。例如防灾减灾、基础设施维护、智能制造、智能教育等。


作者:沈应龙,上海市科学学研究所产业创新研究室助理研究员、博士。本文为上海市科学学研究所“人工智能研究组”研究成果。文章观点不代表主办机构立场。

上一篇:七宗罪:我们是如何错误预估人工智能的
下一篇:最后一页

本周栏目热点

人工智能、机器学习、机器人之间有什么区别和联系?

[2018-04-22]  人工智能(AI)曾经只是科幻电影,电视节目和书籍中探讨的一个话题,如今已经迅速成为现实世界的一部分。 1969年,管理咨询公司麦肯锡公司(McKinsey&Company)发表了一篇文......

[2018-04-22]  人工智能、机器人和自动驾驶已成为流行文化的前沿,甚至是政治表述。而去年人工智能的研究也让我们相信这不是一个失败的开端,而是一个拐点。在这份报告中,高盛从宏观(...

科大讯飞与互动百科联手进军人工智能

[2018-04-14]   日前,互动百科与讯飞开放平台达成战略合作伙伴关系,将在内容和用户体验等方面开展深层次合作,发挥双方在各自领域的资源和技术和 ...

[2018-04-15]   孔鹿代表着IBM在认知计算领域最核心的技术Watson(沃森)的一战成名,是在2011年2月的美国问答节目《Jeop ...

为什么不懂AI? 因为你不懂何为智能

[2018-04-18]  人工智能的支持者们预测,到2030年机器将通过人类智慧的应用进化出意识,这些先驱者中包括埃隆 马斯克,史蒂芬霍金和Raymon ...

精选推荐

揭秘达芬奇手术机器人
揭秘达芬奇手术机器人

[2018-04-19]  达芬奇手术系统是由美国Intuitive Surgical公司制造的机器人手术系统。美国食品和药物管理局(FDA)于2000年通过该标准,旨在利用微创手段 ...

通过对抗性图像黑入大脑
通过对抗性图像黑入大脑

[2018-03-02]  在上面的图片中,左边是一张猫的照片。在右边,你能分辨出它是同一只猫的图片,还是一张看起来相似的狗的图片?这两张图片之间的区别在于, ...

德国研发出一种能在你体内工作的微型机器人

[2018-01-26]  纽约时报的报道,德国的研究人员已经开发出一种长约七分之一英寸的机器人,首先看起来不过是一小块橡皮条。然后它开始移动。机器人走路,跳跃,爬行,滚动和游泳。它甚至爬出......

机器人灵巧手将成为智能机器人的下一个重大突破
机器人灵巧手将成为智能机器人的下一个重大突破

[2018-01-25]  计算机科学教授兼东北地区助手机器人实验室负责人罗伯特·普拉特(Robert Platt)说:“机器人手操作是下一步要解决的问题。想象一下,一个机器人可以在现实世界中用手去做事......

CES 2018:英特尔推出49量子位芯片争夺量子霸权
CES 2018:英特尔推出49量子位芯片争夺量子霸权

[2018-01-10]  在与Google、IBM的一场关于建立量子计算系统的马拉松比赛中,英特尔通过了一个关键的里程碑。近日,这个科技巨头已经推出了一个49个量子位 ...

从AI中窥探人性
从AI中窥探人性

[2018-01-03]  人们对人造智能的恐惧早已成为科幻书籍和电影的极好题材。但现在,一些同样的担忧开始影响关于现实世界AI技术的政策讨论。如果这样的担忧演变成为一种技术恐慌...

2017年:AI渗入云端
2017年:AI渗入云端

[2017-12-29]  云中的人工智能不仅仅是科技巨头的权力游戏,它也可能是人工智能领域的下一个飞跃。加利福尼亚州的Rigetti Computing公司刚刚使用其原型量子芯片之一在其云平台上运行机器学......

人工智能民主化能否实现取决于科技巨头
人工智能民主化能否实现取决于科技巨头

[2017-12-29]  我们经常听到像谷歌和微软这样的公司说他们希望人工智能民主化。这是一个很好的词,民主化。 但这些公司如何界定“民主化”还不清楚,像AI本身一样,它似乎有点炒作的味道...

美国Natilus公司试飞水上无人货机 设计简单成本降低
美国Natilus公司试飞水上无人货机 设计简单成本降低

[2017-12-28]  Natilus创业公司成立于2014年,其梦想是建造大型无人机,以半价提供比船舶快得多国际货运。在十二月份,Natilus计划在旧金山湾测试一个9米翼展的小型原型无人机的水上滑行能力......

助力卷积神经网络时空特征学习 史上最大行人重识别视频数据集被提出
助力卷积神经网络时空特征学习 史上最大行人重识别视频数据集被提出

[2017-12-25]  本文提出了一个大型的、长序列的、用于行人重识别的视频数据集,简称LVreID。与现有的同类数据集相比,该数据集具有以下特点:1)长序列:平均每段视频序列长为200帧,包含丰......