爱吧机器人网 » 技术 > 智能硬件 > 正文

摩尔定律失效?芯片发展放缓,Ai或为撬动产业继续发展的杠杆

算力说

当价格不变时,集成电路上可容纳的元器件的数目,约每隔18-24个月便会增加一倍,性能也将提升一倍,这也被称为摩尔定律。

实际上集成电路的发展速度已经放缓,面对越发微小的纳米工艺,制造业正在面临物理上的瓶颈。但是集成电路仍然要发展,接下来怎么做,华虹集团总工程师赵宇航认为,Ai或许是撬动芯片产业继续向前的杠杆。

赵宇航在世界人工智能大会上表示,将Ai运用在芯片的生产环节,进行精细化管控,提高芯片的设计效率、生产速度和良品率,将原先的自动化生产线进化成智能生产线,将会是芯片行业在后摩尔定律时代的方向。

而华虹集团,正在以AiFab的形式,开始了探索。

下附赵宇航在世界人工智能大会上的演讲实录。

为什么现在需要更复杂的芯片、更难的集成电路制造呢?是因为AI,AI给我们带来了急剧的对存储、处理以及数据量的急剧增长,也是AI,才能接受后摩尔时代的挑战。

1

AI与芯片的第二次时代耦合 我们回顾集成电路半导体的发展历程,上个世纪曾经出现过一次创新耦合的过程。 CPU芯片需要有很好的计算机辅助设计工具才能设计出来,而这些更好的EDA工具需要有更强的CPU才能运行,使得整个EDA设计和CPU产品进入了创新耦合的过程,如果走不通条路,可能集成电路的发展在上个世纪就终结了,最后集成电路突破了这个耦合。 到今天我们又看到了耦合出现的端倪,这是AI带来的。 现在的集成电路制造,涉及到几百种集成电路装备、材料,很多的设计工具,但是如何把这些运转好,是整个生态系统的问题。 如果不靠AI来处理,可能我们的集成电路制造没法往下走,没法制造出具有强大性能,可以在各行各业运用的AI芯片。 进入新的阶段,怎么突破AI和集成电路制造的耦合? 现在AI芯片的需求数据急剧增长,给我们集成电路芯片制造带来了重大的挑战,我们每天需要几百个T的数据量,涵盖了设备、工艺等方面,尤其是光刻。 光刻第一步工序,需要大量的计算数据,每一步都要量测。此外还有新架构、新器材、新芯片都需要新器械、新材料来支撑,这大量的数据给我们集成电路芯片制造带来了几个挑战。 第一个挑战是整个生产线的运营管控,第二个是新工艺。新工艺的工艺制造步骤比以往急剧增加,流程非常复杂。我们制作出来的良率以及产能控制都面临严峻的挑战。 另外现在用的集成电路的装备也非常复杂,每一台装备都是几百万、几千万美金的价格,非常复杂,装备的智能化、装备在线精细化的管控需求在日益提升。

\
华虹集团总工程师赵宇航

2

AIFab,实现耦合的落地方式 根据这样的挑战,我们想应该在集成电路制造过程中,把人工智能集成进去,所以我们提出了AIFab这样一个概念,希望人工智能和集成电路跨越发展,来跨过我们即将出现耦合的过程,使得集成电路发展处于正向的过程。 AIFab聚焦在两个方面,一个方面是智能制造,就是要改变传统的从数据收集到数据存储、数据分析、工程师、管理系统这样一个结构,改成一个网状结构。 在数据分析里面把机器学习的方式加进去,使人和机器形成一整套的管理体系来进行智能制造。其实也就是要把传统的自动化制造改成智能制造,从自动化的生产线转变成一条聪明的生产线。 另外在研发层面,需要大量的数据分析,我们还要去抓很多畸点,这些畸点用传统的计算方法没有办法抓出来,必须要用大数据分析和AI算法植入进去,才能把畸点和缺陷抓出来,加快我们的研发速度。 原来我们集成电路生产线的数据生产架构是ERP系统,其实集成电路的工业自动化程度一直走在各种制造业的前列,所以在自动化上面我们有非常详细的一套体系结构。

\
3

自动化生产线向智能生产线的转变 我们希望这套传统的自动化的体系结构上面,把它转变成为AI的体系结构。首先在数据上面进行分析,进行精细化的管理,我们从需求上面分了包括产品的良率分析和提升、工业研发的精细化管理,还有制造过程的精细化控制,以及提升产线的产能。 这里面比较重要的是生产状态的预测和智能调度。从一道工艺到下一道工艺,何如进行最合理的衔接,如果加入AI预测之后,可以极大的提升我们生产的效率。这个也是通过AI的调度规划的算法,缩短自动化有效的预测时间。原来是以天为单位的,缩小到以小时甚至以分钟为单位,这样可以极大提升我们的生产效率。 另外在工艺研发上面,集成电路生产最怕缺陷,只要在研发当中出现一个缺陷,前面几年的研发结果可能就白费了,因此控制缺陷是非常重要的一项工作。 但是现在的缺陷很多不是规律性产生的,因为集成电路到了纳米尺度之后,很多缺陷是随机的,我们怎么把这些随机的缺陷抓出来? 我们要基于AI研发缺陷识别系统,比如说在图像传感器已经在工业生产中发挥了很好的作用。 集成电路制造是一代装备、一代工艺、一代产品。现在的装备也是越来越复杂,价值越来越高,我们怎么样能够把这些装备运用好? 我们要加入到智能诊断、预警、性能提升上面,对装备运行状态的监控、材料的超差、机器的预警,装备产能怎么样提升,原来一个小时刻两百片,怎么样提高到两百五十片,建立一种自学习的能力,这也是AIFab里面非常重要的工作。

\
我们现在在发明一套技术,能够植入到工艺装备里面的嵌入式的智能控制技术,包括光刻机,通过AI算法的植入,使得这些机器在原来自动化上面具备自我学习、自我诊断的能力,是在生产线上利用的效果更好,最后形成真正把我们一个制造生产线从自动化进步到是一条聪明的生产线。 AIFab 有可能是解决我们目前将要碰到的 AI 和芯片制造技术创新耦合的一个重要手段。因此,我们也秉承开放、创新、合作的企业精神,欢迎广大的 AIFab 和华虹一块共同推动 AIFab的落地与发展。

上一篇:谷歌新专利:可AI监控婴儿 追踪其眼球 发现异常立即通知父母
下一篇:华为首次发布整体计算策略 推出全球最快AI训练集群

本周栏目热点

[2019-08-21]  据TNW消息,英特发布了两款Nervana NNP系列新的处理器,旨在加速人工智能模型的训练。据悉,英特尔Nervana NNP系列是以 2016 年收购的N ...

华米 AMAZFIT 智能手表拆解测评

[2019-02-26]  对比起苹果、三星的智能手表,华米的智能手表似乎也是一个非常不错的性价比之选。本期拆评就位大家带来华米AMAZFIT 智能手表的拆解。...

三星新款智能“表”现身:佩戴方式亮了

[2016-01-19]   威锋网 1 月 17 日消息三星曾在刚落幕的 CES 2016 上向外界展示了旗下首款生物处理器(Bio-Proc ...

[1970-01-01]  从现在来看,中美已然成为世界最大的两个经济体,那么未来创业者的力量是这两大经济体中的核心竞争力量。...

穿上这个5.5kg的“肌肉装” 你就能多搬30kg的东西

[2015-12-27]   日本企业Innophys最新宣布推出一款新的可穿戴骨骼装(或者叫外骨骼盔甲),这类装备先前就有日本企业在 ...

精选推荐

苹果AI主管透露自动驾驶汽车项目关于机器学习方面的进展
苹果AI主管透露自动驾驶汽车项目关于机器学习方面的进展

[2017-12-11]  苹果隐秘的自动驾驶汽车项目多年来一直在转移焦点,但今年似乎正在加速。 4月份,公司获得了在加利福尼亚州进行自动驾驶汽车测试的许可证,而在6月份,苹果公司首席执行官库......

受大脑控制的机器人
受大脑控制的机器人

[2017-03-21]   想让机器人做我们想做的,首先,他得全面地了解我们。通常,这就意味着人类需要要付出更多。比如,教机器人复杂的人类语言或者把一项任务 ...

麻省理工最新机器人“装配工”未来可建造太空基地
麻省理工最新机器人“装配工”未来可建造太空基地

[2019-10-17]  两个机器人原型把一系列小单元组装成大结构体麻省理工学院科研人员最近提出一种新型机器人技术,即一种小型机器人系统,能够自主地用统一规 ...

谷歌在中国成立一个新的人工智能(AI)研究中心
谷歌在中国成立一个新的人工智能(AI)研究中心

[2017-12-13]  谷歌正在中国建立一个新的人工智能(AI)研究中心,希望进一步扩展到中国,以充分利用中国高度重视的人工智能技术。人工智能是目前地球上最具竞争力的领域之一,亚马逊,微软......

英国首台月球车是个小型四腿机器人 将于2021年登月
英国首台月球车是个小型四腿机器人 将于2021年登月

[2019-10-12]  探测器将用四条腿探测月球表面,并将数据传回着陆器,后者将把数据传回地球图 詹姆斯温斯皮尔英国即将成为继美国、俄罗斯、中国之后的又一 ...

新型轻便机器人套装重5kg,辅助跑步和步行
新型轻便机器人套装重5kg,辅助跑步和步行

[2019-10-23]  虽然步行对大多数人来说似乎不是负担,但对有些人来说,这项简单的运动往往会让人感到筋疲力尽。比如手术或中风后恢复的患者、帕金森氏症患 ...

机器人iCub作为嵌入式AI的标准机器人研究平台的重要性
机器人iCub作为嵌入式AI的标准机器人研究平台的重要性

[2017-12-24]  机器人的研究在过去10年中得益于一个具有嵌入式人工智能(AI)的标准化开源平台——人形机器人iCub。iCub最初在意大利被创建,如今在欧洲、美国、韩国、新加坡和日本的实验室......

智能机器人困惑的时候知道该问什么问题
智能机器人困惑的时候知道该问什么问题

[2017-03-20]   照片:Nick Dentamaro 布朗大学 上周,我们提到了麻省理工学院的一些研究,即通过链接人的大脑来帮助机器人在他们将要犯错误的时 ...